Смекни!
smekni.com

Очерк общей теории старения и где ошибаются современные геронтологи (стр. 4 из 13)

1). Так ли уж очевидно, что для прогрессивной эволюции необходима программа самоликвидации отдельно взятой особи?

2). Действительно ли апоптоз, накопление повреждений молекулами мтДНК, ошибки в контроле клеточного цикла, нестабильность генома, укорочение теломер при митозе другие процессы клеточного старения укорачивают жизнь живых многоклеточных существ вообще и высших позвоночных в частности.

Своими примерами в своих же работах Скулачев фактически опровергает самого себя: - "Бамбук 15-20 лет может размножаться вегетативно и, казалось бы, быть бессмертным, но потом вдруг принимает решение перейти на половое размножение, появляются цветы, семена и буквально через несколько дней после созревания семян бамбук погибает."

Менее известный, но тоже характерный пример: мексиканская агава, прожив девять лет, на десятый цветет, дает плод и тут же засыхает. Но ведь другие же виды растений превосходно обходятся без подобных механизмов самоуничтожения?! Так может быть для прогрессивной эволюции необходима программа самоликвидации отдельно взятой особи только в некоторых случаях, что характерно только для определенного числа видов. А процессы клеточного старения идут параллельно и независимо от процессов организменного старения, практически не влияя друг на друга.

Для того чтобы получить ответы на эти непростые вопросы необходимо рассмотреть, а лучше опровергнуть ещё один незыблемый и общепринятый в наши дни постулат геронтологии о том что, старение и смерть появились на Земле одновременно с возникновением многоклеточных организмов.

Этот догмат так вошел в современную культуру, что его можно обнаружить не только в работах по геронтологии, но и в философских и даже художественных произведениях. Например: - "Лишь с многоклеточными в наш мир вошла смерть, с развитием нервной системы - боль, с сознанием - страх... с имуществом - заботы, а с моралью - сомнения". (Вернер Гитт. Творил ли Бог через эволюцию?) Свободный доступ!

Но старение и смерть категории неравнозначные. И смерти необязательно предшествует старение.

Необходимо обратить мысленный взор в те далекие времена, когда из продвинутых одноклеточных эукариот возникали первые многоклеточные организмы. Клетка из самодостаточного организма превращалась в часть сложной системы.

Да, в те времена, каждая клетка примитивного многоклеточного организма получала в наследство от одноклеточных предшественников программы клеточного старения и программу программируемой клеточной гибели. Но они были в состоянии уничтожить или состарить только ту или иную клетку организма, но не организм в целом.

Из подобных реликтов прошедших эпох в наши дни существует ряд таких бессмертных реликтов. Это гидра (актиния), некоторые виды медуз и еще ряд организмов. Прекрасный пример - пресноводная гидра - хищный полип величиной около двух сантиметров, который обитает в водоемах. Впервые на гидру как бессмертный организм указал французский биолог П. Бриан в конце 60-х годов 20го столетия. В оптимальных условиях гидра живет неограниченно долго, никак не меняясь, не старея. Иначе говоря, она - бессмертна. В чем же дело?

В верхней части тела гидры, чуть ниже щупалец, находится зона, где особенно много постоянно делящихся клеток. Отсюда новые клетки мигрируют к концам тела, где дифференцируются в покровные, нервные, стрекательные. Однако через некоторое время уже их вытесняют новые молодые клетки, приходящие из зоны интенсивной пролиферации. Этот процесс идёт бесконечно, и гидра живёт неограниченно долго, не проявляя признаков старения. Но при одном непременном условии: благоприятной внешней среде. Стоит случиться незначительному природному катаклизму - изменению температуры или состава воды - и деление клеток замедляется, гидра стареет и гибнет. Поэтому гидра бессмертна лишь потенциально. А точнее, сама по себе - как биологический объект - она абсолютно бессмертна, однако при взаимодействии с внешней средой её абсолютное бессмертие превращается в относительное.

Как видите, на заре эволюции природа создавала бессмертные организмы.

Вывод из этого примера может быть только один - в момент возникновения многоклеточности, первые многоклеточные организмы избавляются от программы самоуничтожения и получают как бы потенциальное бессмертие.

Не исключено, что это потенциальное бессмертие может быть также потенциально ограничено клеточными программами старения.

Представим себе смерть от старения такого лишенного, каких либо механизмов самоуничтожения организма в идеальных условиях. Данный организм получает возможность жить до тех пор, пока все его клетки не потеряют способность к существованию, в результате процессов клеточного старения. Но для живого существа это означает практически ничем не ограниченную продолжительность жизни. По крайней мере, в том временном континууме, с которым в человеческом мозгу связывается понятие беспредельное долголетие. Например, с долголетием секвойи гигантской Sequoia gigantea с продолжительностью жизни более чем 4 тыс. лет или старением клона малины или винограда. Старение подобных биологических объектов автор предлагает использовать обозначить термином "истинное старение".

Но если у такой бессмертной гидры усложнить морфологию и увеличить уровень метаболизма до максимально возможного для живых существ уровня, то не исключено, что мы будем наблюдать то, что мы наблюдаем у птиц. Автор полагает, что среди всего разнообразия живых существ, только у птиц, учитывая их фантастический уровень метаболизма, максимальная продолжительность жизни ограничена клеточными процессами старения, т.е. среди видов птиц мы можем наблюдать "истинное старение". Безусловно, это мнение пока не подтвержденное, но интуиция это также метод познания. В остальных же таксонах клеточное старение видимо не влияет (точнее, не успевает повлиять) на продолжительность жизни многоклеточного существа. Хотя нельзя исключать, что механизмы клеточного старения могут быть в том или ином эволюционном дизайне пусковым триггером, или биологическими часами отсчитывающими время жизни. В примере с гидрой клеточные механизмы старения начинают влиять на продолжительность жизни, когда организм гидры лишается возможности заменять отработавшие клеточные элементы. Но в природе существует много организмов, в дизайне которых существуют ткани из клеток ""одноразового пользования", т.е. постмитотичных.

Одним словом, постоянная молодость и, фактически, бессмертие не противоречат природе, встречаются в природе и являются возможными! Но если клеточные механизмы старения практически не ограничивают продолжительность жизни растений, гидры, и так называемых "нестареющих видов животных", то почему же они должны ограничивать её у нас, млекопитающих?

Академик Скулачёв в своей концепции феноптоза, цепь событий митоптоз - апоптоз - органоптоз предлагается дополнить еще одним этапом - запрограммированной смертью особи - феноптозом. Но имеет ли место подобная цепь событий? Я имею ряд сомнений о зависимости самоуничтожения многоклеточного организма от процессов апоптоза.

Напомню, что программируемая клеточная гибель (ПКС), или апоптоз - механизм, широко распространенный в различных царствах живого, включая прокариот. Эволюционно ПКС возникла у прокариот как механизм противовирусной защиты популяций и была закреплена у одноклеточных эукариот. Часто прокариоты в случае экстремальных ситуаций используют программируемую клеточную гибель для выживания популяции. Например, апоптоз у E. coli можно рассматривать как пример "бактериального альтруизма". В экстремальных условиях часть голодающих клеток лизируется, способствуя выживанию остальной части клеточной популяции (Adams and Cory, 1998; Gross et al., 1999).

В дальнейшем, с появлением многоклеточных организмов, механизм совершенствовался и был приспособлен, наряду с защитой от патогенов, для реализации важных жизненных функций - дифференцировки клеток и тканей при эмбриогенезе и постэмбриональном развитии, элиминирования клеток иммунной системы, невостребованных, состарившихся клеток либо клеток, подвергшихся воздействию мутагенных факторов. Таким образом, у многоклеточных организмов - животных, растений и грибов генетически заложенная программа гибели клеток не связана с его самоуничтожением.

Да, феномен программируемой смерти (ПКС) необходим для выживания одноклеточных организмов. Безусловно и то, что подобный механизм должен возникнуть в процессе эволюции и среди многоклеточных, но как выше показано в момент своего возникновения эти многоклеточные как бы лишаются механизма самоуничтожения. Эволюционно ПКС "приспосабливается" на совершенно другие цели. Поэтому многоклеточные организмы должны эволюционно как бы заново "изобрести" механизм собственного самоуничтожения. Исходя из того, что мы сегодня знаем, нельзя исключать, и то, что у многоклеточных организмов феноптоз может быть, реализован на совершенно ином уровне чем у одноклеточных, и с использованием совершенно иных механизмов.

Почему же тогда академик Скулачев утверждает, что именно апоптоз причина феноптоза? Ведь у многоклеточных апоптоз "занят" совершенно другими важными жизненными функциями. Никто не будет оспаривать тот факт, что разрегулирование процессов апоптоза в организме млекопитающих может вызывать смерть. Но ведь это сцена из совершенно иной пьесы (а из какой именно - об этом речь пойдёт ниже), и к возрастзависимому самоуничтожению это не имеет никакого отношения. Видимо это вопрос о надежности того или иного эволюционного дизайна в тех или иных условиях существования.

Видимо, также не может рассматриваться как инициальный субстрат старения или самоуничтожения указанный в работах Скулачёва феномен укорочение теломер благодаря подавлению активности теломеразы на ранних стадиях эмбриогенеза.