Смекни!
smekni.com

Общая теория относительности (стр. 1 из 2)

Марио Льоцци: ТЯЖЕЛАЯ МАССА И ИНЕРТНАЯ МАССА

Подобно классической механике, специальная теория относительности также приписывала привилегированное положение «галилеевым» наблюдателям, т. е. наблюдателям, находящимся в системах, движущихся равномерно и прямолинейно. Но что является основанием этого преимущества галилеевых систем отсчета? Ответить на такой вопрос было очень нелегко.

В 1907 г. Эйнштейн приступил к исследованию этого вопроса, начав с критического пересмотра одного факта, хорошо известного классической физике. В классической физике инертная масса тела определяется как постоянное отношение приложенной к ней силы к приобретаемому ускорению, а тяжелая масса определяется как отношение веса тела к ускорению cилы тяжести. Очевидно, нет никаких оснований априори считать, что обе определенные так массы равны между собой, поскольку тяготение не имеет никакого отношения к определению инертной массы. Равенство обеих масс (при надлежащем выборе единиц) является опытным фактом, который был установлен Ньютоном в опытах с маятниками, а еще раньше Галилеем в опытах с падающими телами. При падении тел ускорение пропорционально тяжелой массе и обратно пропорционально инертной массе, и поскольку все тела падают с одинаковым ускорением, то обе массы равны. Подобное рассуждение имеется еще у Бальяни, который, отождествляя тяжелую и инертную массы, приходил к выводу о постоянстве ускорения силы тяжести.

В более позднее время Р. Этвеш в серии весьма точных опытов, проведенных с 1890 по 1910 г. и продолженных в 1922 г., показал, что эта эквивалентность тяжелой и инертной масс соблюдается с точностью выше одной двадцатимиллионной. Опыты Этвеша основаны на том, что равновесие отвеса определяется притяжением Земли, зависящим от тяжелой массы, и центробежной силой, вызванной вращением Земли и зависящей от инертной массы. Если бы эти массы не были одинаковы, то направление отвеса зависело бы от материала (свинец, железо, стекло и т. д.), из которого сделан шар отвеса. Однако Этвеш с помощью чувствительнейших крутильных весов установил, что отвес не меняет своего направления независимо от материала, из которого он изготовлен. Таким образом, в равенстве тяжелой и инертной масс сомневаться невозможно. Классическая механика в этом и не сомневалась, но она принимала этот факт как случайный, даже не пытаясь как-нибудь его объяснить.

В упомянутой работе 1907 г. Эйнштейн показал с помощью наглядных соображений, что равенство тяжелой и инертной масс совсем не случайный факт, что оно носит особый характер, проявляясь как внутреннее свойство гравитационного поля. Эйнштейн пришел к этому выводу с помощью мысленного опыта, ставшего теперь классическим, опыта со свободно падающим лифтом. Представим себе гигантский небоскреб высотой 1000 км и физика, находящегося внутри свободно падающего лифта в этом небоскребе. Физик выпускает из рук платок или часы и убеждается, что они не падают на пол лифта. Если он сообщает этим вещам толчок, то они движутся равномерно и прямолинейно, пока не столкнутся со стенками лифта. Физик приходит к выводу: я нахожусь в ограниченной галилеевой системе. Условие ограниченности необходимо для того, чтобы можно было считать, что все тела испытывают одинаковое ускорение. Но физик, наблюдающий извне за падением лифта, будет судить о вещах совершенно иначе. Он видит, что лифт и все находящиеся в нем тела движутся ускоренно в соответствии с законом тяготения Ньютона.

Этот пример показывает, что можно перейти от галилеевой системы к ускоренной, если учесть гравитационное поле. Иными словами, гравитационное поле (в котором проявляется тяжелая масса) эквивалентно ускоренному движению (в котором проявляется инертная масса). Тяжелая масса и инертная масса характеризуют одно и то же свойство материи, рассматриваемое по-разному. Таким образом, Эйнштейн пришел к принципу эквивалентности, который он так сформулировал в своей автобиографии: «В поле тяготения (малой пространственной протяженности) все происходит так, как в пространстве без тяготения, если в нем вместо „инерциальной" системы отсчета ввести систему, ускоренную относительно нее».

Принцип эквивалентности можно сформулировать и иначе: наблюдатель никакими опытами в своей системе отсчета не может различить, находится ли он в гравитационном поле или же ускоренно движется. Для случая мысленного эксперимента со свободно падающим лифтом принцип эквивалентности справедлив в небольшой части пространства, т. е. имеет локальный характер.

ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Принцип эквивалентности послужил отправной точкой для переработки теории относительности в новую теорию, которую Эйнштейн назвал общей теорией относительности (в отличие от нее прежняя теория была названа специальной). Новая теория была изложена Эйнштейном после подготовительных работ 1914—1915 гг. в фундаментальном труде «Die Grundlage der allgemeinen Relativitatstheorie» («Основы общей теории относительности»). Вторая часть этой работы посвящена описанию математического аппарата, необходимого для развития этой теории. К счастью, такой аппарат уже существовал — это было так называемое «абсолютное дифференциальное исчисление», приведенное в систему еще в 1899 г. Грегорио Риччи-Курбастро (1853—1925) и Туллио Леви-Чивита (1873-1941).

Основной постулат общей теории относительности заключается в том, что не существует привилегированных систем координат. «Законы физики, — говорит Эйнштейн, — должны быть таковы по природе, что они должны быть применимы к произвольно движущимся системам отсчета».

Законы физических явлений сохраняют свою форму для произвольного наблюдателя, так что уравнения физики должны оставаться инвариантными не только при лоренцевых, но и при произвольных преобразованиях.

Выведенные отсюда Эйнштейном математические следствия не менее важны, чем следствия из специальной теории относительности. Они ведут к дальнейшему обобщению понятий пространства и времени. Если кинематическое изменение видоизменяет или уничтожает гравитацию в какой-либо системе отсчета, то ясно, что между гравитацией и кинематикой существует тесная связь. А поскольку кинематика — это геометрия, к которой добавлена еще одна, четвертая переменная — время, то Эйнштейн интерпретирует явления гравитации как геометрию пространства-времени. Отсюда вытекает что, согласно общей теории относительности, наш мир не является евклидовым; его геометрические свойства определяются распределением масс и их скоростями.

С помощью знаменитого мысленного эксперимента, о котором было много споров, Эйнштейн со всей очевидностью показал тесную связь между кинематикой и геометрией. Предположим, что наблюдатель находится на круглой платформе, быстро вращающейся по отношению к внешнему наблюдателю. Внешний наблюдатель вычерчивает в своей, галилеевой системе отсчета окружность, равную внешней окружности платформы, измеряет ее длину и ее диаметр, составляет их отношение и находит число π евклидовой геометрии. Наблюдатель, находящийся на платформе, выполняет те же измерения с помощью той же линейки, которой пользовался внешний наблюдатель. Линейка, помещенная вдоль радиуса платформы, хотя и находится в движении относительно внешнего наблюдателя, не претерпевает изменения длины, потому что платформа движется перпендикулярно радиусу. Но когда наблюдатель начинает измерять периметр платформы, то линейка по отношению к внешнему наблюдателю представляется укороченной, потому что в этом положении она движется в направлении своей длины (лоренцево сокращение), платформа кажется более длинной и для числа π получается значение, большее, чем в предыдущем случае.

Аналогичное явление имеет место и со временем. Если взять двое идентичных часов и одни поместить в центре платформы, а другие — на периферии, то внешний наблюдатель увидит, что часы, находящиеся на периферии и движущиеся по отношению к другим часам, идут медленнее, чем часы, находящиеся в центре, и придет к заключению, что часы на периферии действительно отстают.

Но, согласно принципу эквивалентности, явления движения аналогичны явлениям гравитации. Следовательно, в гравитационном поле евклидова геометрия уже не справедлива, а часы отстают. Пример с платформой имеет прежде всего дидактическое значение; математически гравитационное поле отличается от центробежного поля вращающейся платформы. В гравитационном поле, создаваемом центральной массой, сокращаются радиальные размеры и остаются неизменными поперечные. Поэтому отношение окружности к диаметру становится меньше π. Эддингтон рассчитал порядок величины этого изменения числа∏: если массу в одну тонну поместить в центре окружности радиусом пять метров, то число ∏ изменится в 24-м знаке.

В общей теории относительности уравнения гравитации имеют тот же вид, что и уравнения Максвелла (в том смысле, что они описывают изменения гравитационного поля); из них вытекают геометрические свойства нашего неевклидова мира.

ЭКСПЕРИМЕНТАЛЬНЫЕ ПОДТВЕРЖДЕНИЯ

Новые законы тяготения приводят к некоторым следствиям, поддающимся экспериментальной проверке. Поскольку энергия обладает массой, а инертная масса является также и тяжелой массой, то отсюда следует, что тяготение действует и на энергию. Поэтому луч света, проходящий в гравитационном поле, должен отклоняться. Фактически такое отклонение вытекает также из ньютоновской корпускулярной теории света; расчет отклонения луча света звезды, проходящего близ Солнца, был проведен еще в 1804 г. Зольднером, который получил значение вдвое меньше рассчитанного по теории относительности. Опыты, проведенные во время полных солнечных затмений 29 мая 1919 г. и 21 сентября 1922 г., подтвердили выводы общей теории относительности и в количественном отношении (хотя среди астрономов полного согласия не было). Подтверждение не предсказываемого специальной теорией относительности влияния тяготения на прохождение луча показывает, что теория справедлива лишь в отсутствие гравитационных полей. По отношению к общей теории относительности она оказывается лишь приближенной теорией, точно так же как классическая механика является приближенной теорией по отношению к специальной теории относительности.