Смекни!
smekni.com

Биотопливо: новые источники сырья (стр. 3 из 3)

В настоящее время разрабатываются концепции и технологии для получения биотоплива четвертого поколения, которое будет более рентабельным и экологически чистым (с минимальным совокупным выбросом СО2 в атмосферу). Моделирование организмов с использованием методов генетической инженерии представляет основу для создания таких видов топлива. Заменяя одни гены другими, ученые могут заставить организмы, способные преобразовывать простые сахара и масла прямо в прекурсоры биотоплива, выделять эти соединения непосредственно в окружающую водную среду.

Однако радикально повысить эффективность фотосинтеза генно-инженерными методами, по-видимому, будет очень трудно [8, 9, 17].

Сегодня основная трудность в получении биотоплива из травы, опилок, ботвы культурных растений и тому подобного заключается в разложении важнейшего компонента растительной клетки — целлюлозы — на простые компоненты.

Ученые использовали микроорганизмы, обитающие в кишечнике жвачных животных — коров [14]. Эти микроорганизмы выделяют специальные ферменты, разлагающие целлюлозу на простые компоненты, которые затем могут быть усвоены организмом животного [13].

Были исследованы геномы 20 видов бактерий, относящихся к родам Clostridium и Thermoanaerobacteraceae, и разработана специальная методика анализа биологического материала, которая позволила расшифровать ДНК этих до сих пор во многом загадочных микроорганизмов. В связи с этим выявлено около 30 тысяч генов, потенциально способных выполнять функции разложения целлюлозы. Из них было выбрано 90 генов ферментов, которые были протестированы на активность в процессах расщепления целлюлозы. Примерно 20 % из этого количества генов проявили способность активно разлагать целлюлозу, содержащуюся в растении просо. Таким образом, ученые открыли ранее неизвестные гены ферментов, которые могут быть использованы для разработки и генетической трансформации микроорганизмов с целью получения биотоплива из отходов растениеводства и сорной травы.

В Соединенных Штатах биологам удалось вывести несколько штаммов бактерий кишечной палочки, которые способны сразу осуществлять весь процесс производства биотоплива [10]. Сам процесс производства биотоплива состоит из двух этапов. На первом этапе бактерии расщепляют целлюлозу и гемицеллюлозу. На втором этапе продукты расщепления синтезируются в биотопливо. Набор штаммов микроорганизмов объединил оба сложных этапа производства биотоплива. Эти организмы сами расщепляют все компоненты биомассы, превращают полученные элементы в сахара, из которых сами же и создают молекулы органического топлива.

Ученые вставили в геном кишечной палочки гены, которые отвечают за расщепление целлюлозы и гемицеллюлозы и выделение биотоплива. Сравнивая различные виды бактерий, расщепляющих биомассу, ученые выбрали десять самых эффективных ферментов и в геном кишечной палочки вставили гены, соответствующие этим ферментам. В результате бактерии с генами, отвечающими за расщепление гемицеллюлозы, и генами, разрушающими целлюлозу, заработали и стали образовывать промежуточные фрагменты-олигомеры. Гены заработали так, что олигомеры стали выделяться в среду выращивания, вне бактерии. Аналогичные наборы генов, расщепляющих уже олигомеры целлюлозы и гемицеллюлозы, подключили к предыдущим так, что они начинали работать, когда в питательном растворе накапливалось достаточное количество фрагментов гемицеллюлозы и целлюлозы. Последним этапом выстраивания «архитектуры» бактерий-биореакторов стало присоединение к модифицированным геномам кишечных палочек генов, которые будут синтезировать биотопливо. Фактически появился целый «живой конвейер», производящий биотопливо. Ученые уже проверили жизнеспособность новых бактерий на практике, с этой целью засеяв бактериями обработанную биомассу из стеблей и листьев гигантского проса.

Таким образом, были разработаны штаммы E. coli, которые осуществляют механизмы синтеза трех разных типов биотоплива. Это позволило продемонстрировать, что синтез топливных заменителей или прекурсоров для бензиновых, дизельных и реактивных двигателей происходит непосредственно в жидкой среде обработанного проса без добавления ферментов гидролаз. Такая демонстрация представляет собой важный шаг в реализации ослабления разногласий в осуществлении процессов производства биотоплива.

Учеными была разработана интересная «электромикробная» система, которая на входе получает электричество и углекислый газ, а на выходе производит изобутанол и 3-метил-1-бутанол — вещества, которые можно использовать в качестве жидкого топлива, пригодного для двигателей внутреннего сгорания [16]. Главным компонентом в этой системе является генетически модифицированная бактерия Ralstonia eutropha. На катоде синтезируется формиат (HCOO), который поглощается бактериями. Окисляя формиат, бактерии производят НАДН, который затем используется для синтеза органики из CO2. Помимо веществ, необходимых для жизни и роста самих микроорганизмов, бактерии синтезируют биотопливо при помощи встроенного в их геном комплекса генов. Эта генетическая конструкция была разработана ранее и опробована на кишечной палочке [6, 7]. Основными ее компонентами являются гены ферментов, осуществляющих декарбоксилирование кетокислот, которые производятся бактериями в качестве промежуточных продуктов в ходе синтеза аминокислот валина и лейцина. В результате вещество, «предназначенное» для синтеза валина, частично превращается в изобутанол, а из предшественника лейцина производится 3-метил-1-бутанола. В итоге микробы могут расти в реакторе и производить биотопливо из углекислого газа, используя электрический ток в качестве единственного источника энергии.

Экологическая составляющая и экономические показатели различных методов производства биотоплива делают их недостаточно рентабельными, чтобы полностью вытеснить использование ископаемого топлива. Задача получения углеводородов биомассы в таких объемах и/или по такой себестоимости, чтобы они могли конкурировать с нефтью, может оказаться непростой даже для модифицированных микроорганизмов. Основная цель состоит в том, чтобы создать целый генетический код с нуля, контролируя все параметры.

Подводя итоги, отметим, что биомассу можно превращать в энергоемкие соединения, которые допустимо использовать для транспорта, для обогрева жилищ, для химической индустрии. Такое использование биомассы может сыграть существенную роль в энергетической безопасности и охране окружающей среды. Все это потребует значительных долгосрочных междисциплинарных усилий. Для того чтобы этого достигнуть, должен быть устранен целый ряд узких мест в интегрированной цепочке производства биотоплива: метаболическое конструирование и моделирование штаммов, накопление конкретных соединений, переработка биологических веществ, дизайн и эксплуатация фотобиореакторов и, наконец, использование логистики, которая объединяет все эти процессы в единое целое и делает их рентабельными.

Список литературы

Аршинова А. Вадим Яковлев (ИК СО РАН) о перспективах биотоплива // URL: http://www.computerra.ru/584522/

Варфоломеев С.Д., Ефременко Е.Н., Крылова Л.П. Биотоплива // Успехи химии. 2010. Т. 79. № 6. С. 544-564.

Моисеев И.И., Тарасов В., Трусов Л. Эволюция биоэнергетики. Времяводорослей// The Chemical Journal. 2009. Декабрь. С. 24-29.

Назаренко Л.В. Биотопливо: история и классификация видов биотоплива // Вестник МГПУ. Серия «Естественные науки». 2012. № 2 (10). С. 16-32.

Храменков С., Козлов М. и др. Ресурс особого назначения. Использование потенциала очищенной воды городов для производства биотоплива // Вода Magazine. 2011. № 1 (41). C. 18-22.

Atsumi S., Hanai Т., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels // Nature. 2008. V. 451. P. 86-89.

Atsumi S., Wu T. Y., EcklE.M. et al. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes // Appl. Microbiol .Biotechnol. 2010. V. 85 (3). P. 651-657.

Benemann J. Microalgae biofuels: a brief introduction // URL: http://www. adelaide.edu.au/biogas/renewable/biofuels_introduction.pdf.

Blankenship R.E., Tiede D.M. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement // Science. 2011. V. 332. P. 805-809.

Bokinsky G., Peralta-Yahya Р.Р. et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli // PNAS. 2011. V. 108. № 50. P. 19949-19954.

Schenk P.M., Thomas-Hall S.R., Stephens Е. et al. Second generation biofuels: high- efficiency microalgae for biodiesel production // Bioenergy Research. 2008. V. 1. P. 20-43.

Chisti Y. Biodizel from microalgae // Biotechnology Advances. 2007. V. 25. P. 294-306.

Hemme C.L., Mouttaki Н. et al. Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production // J. Bacteriol. 2010. V. 192. № 24. P. 6494-6496.

Hess M., Sczyrba А. et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen // Science. 2011. V. 331. P. 463-467.

Kuchkina A.Yu. Gladyshev M.I. et al. Biodiesel production from sediments of a eutrophic reservoir.

LiH., Opgenorth Р.Н. et al. Integrated electromicrobial conversion of CO2 to higher alcohols // Science. 2012. V. 335. P. 1596-1599.

RosenbergJ.N., Oyler G.A. et al. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution // Curr. Opin. Biotechnol. 2008. V. 19. P. 430-436.

Walker D.A. Biofuels, facts, fantasy, and feasibility // J. Appl. Phycol. 2009. V. 21. P. 509-517.

Weyer K.M., Bush D.R. et al. Theoretical Maximum Algal Oil Production // BioEnergy Research. 2010. V. 3. № 2. P. 204-213.

Wijffels R.H., Barbosa M.J. An outlook on microalgal biofuels // Science. 2010. V. 379. P. 796-799.