Смекни!
smekni.com

Развитие продуктивного мышления на уроках математики (стр. 13 из 14)

При решении задачи «Что больше:

или
?» ([5], № 1263) учащиеся, как правило, применяют наиболее естественный в данном случае способ решения — приведение дробей к общему знаменателю и сравнение их числителей.

Мы познакомили учащихся и с другими способами решения этой задачи, которые могли оказаться полезными при решении других задач.

Так, вычтя из обеих дробей по 0,1, мы получили дроби с одинаковыми числителями, которые сравним устно:

Так как

>
, то
>
.

Можно сравнить данные дроби и другим способом: умножив каждую из дробей на 10 и выделив единицу, будем иметь

Так как

>
, то первая из данных дробей больше второй.

Иногда бывает целесообразным решить задачу в общем виде, хотя, как правило, числовые данные призваны упрощать решение задачи.

Семиклассникам была предложена задача: «Докажи­те, что не существует целых коэффициентов a, b, c, d, таких, что значение многочлена ax3 + bx2 + cx + d равно 1 при х = 19 и равно 2 при х = 62» ([5], № 1273).

Наряду с решением этой задачи с помощью составления системы уравнений для заданных числовых значений было дано решение задачи в общем виде. Из системы

получали

, откуда следовало, что для целых a, b, c, х1, х2, А, В выражение А – В всегда кратно х1х2. Подставив х1 = 62, х2 = 19, А = 2, В =1, получали, что А – В не делится на х1х2 (1 не делится на 43). Следовательно, утверждение задачи доказано.

Такой способ решения позволил нам (и ученикам) варьировать условие этой задачи, импровизировать на ее тему.

Например, было предложено учащимся заполнить недостающие данные в условиях следующих задач:

Докажи­те, что не существует целых коэффициентов a, b, c и d, таких, что значение многочлена ax3 + bx2 + cx + d равно 1 при х =… и равно 2 при х =… .

Докажи­те, что не существует целых коэффициентов a, b, c и d, таких, что значение многочлена ax3 + bx2 + cx + d равно … при х = 19 и равно … при х = 2.

Полезно также предложить учащимся составить и решить другие задачи на данную тему, основываясь на решении задачи в общем виде.

Заметим, что частое использование одного и того же метода при решении задач иногда приводит к привычке, которая становиться вредной. У решающего задачу вырабатывается склонность к так называемой психологической инерции. Поэтому, как бы ни казался учащимся простым найденный способ решения задачи, всегда полезно попытаться найти другой способ решения, который обогатит опыт решающего задачу. Кроме того, в некоторых случаях, получение того же результата другим способом служит лучшей проверкой правильности результата.

В заключение нами было проведено вторичное тестирование. Для проведения повторных испытаний использовался вариант методики альтернативный «рычаговому», предполагающий «открытие» условия равновесия ворота.

Результаты вторичного испытания отражены в таблице:

октябрь 1995 г. март 1996 г.
в с н в с н
экспериментальные классы 18 35% 26 50% 8 15% 28 54% 22 42% 2 3%
контрольный класс 10 36% 14 50% 4 14% 11 39% 14 50% 3 11%

Как видим, результаты во всех классах улучшились. Однако, далеко не пропорционально. Сравнительно небольшое улучшение показателей «контрольного» класса мы склонны отнести за счет привыкания учащихся к подобному тестированию (и, конечно, мы полагаем, что изучение математики и по стандартной методике способствует активизации творческой мыслительной деятельности учащихся). Улучшение же показателей «экспериментальных» классов (причем в более значительной степени нежели в «контрольном» классе) дает нам основание считать гипотезу, выдвинутую нами в начале нашей работы, подтвердившейся и конкретные методические приемы по развитию продуктивного мышления школьников заслуживающими внимания.

Мы не считали наш результат конечным. Необходимо и далее разрабатывать и усовершенствовать приемы и методы развития продуктивного мышления, в зависимости от индивидуальных свойств и особенностей каждого отдельно взятого учащегося. Многое также будет зависеть от педагога-предметника, от того, будет ли он учитывать особенности познавательных процессов школьников и применять приемы активизации продуктивного мышления в ходе объяснения и закрепления материала, будет ли он строить свои уроки на ярком, эмоционально окрашенном рассказе или чтении текста учебника и от многих других фактов.

Анализируя проделанную работу можно сделать ряд выводов:

1. Экспериментальные занятия по курсу математики в 7 классах СШ № 18 г. Астрахани были достаточно продуктивны. Нам удалось достичь основной цели данного исследования — выработать ряд методических приемов, включенных в обычные программные уроки и позволяющих овладевать приемами продуктивного мышления, а следовательно облегчать усваиваемость материала и активизировать творческие способности школьников.

2. Анализ учебного материала, предшествующий практической части работы, позволил структурировать отобранный материал наиболее логичным и приемлемым способом, в соответствии с целями исследования.

3. Результатом проведенной работы являются несколько методических рекомендаций к курсу математики:

1) В целях совершенствования преподавания математики целесообразна дальнейшая разработка новых методик использования нестандартных задач.

2) Систематически использовать на уроках задачи, способствующие формированию у учащихся познавательного интереса и самостоятельности.

3) Осуществляя целенаправленное обучение школьников решению задач, с помощью специально подобранных упражнений, учить их наблюдать, пользоваться аналогией, индукцией, сравнениями и делать соответствующие выводы.

4) Целесообразно использование на уроках задач на сообразительность, задач-шуток, математических ребусов, софизмов.

5) Учитывать индивидуальные особенности школьника, дифференциацию познавательных процессов у каждого из них, используя задания различного типа.

Таким образом, проведенное нами исследование позволяет утверждать, что работа над формированием навыков продуктивного мышления у учащихся дело важное и необходимое. Поиск новых путей активизации творческой деятельности школьников является одной из неотложных задач современной психологии и педагогики.

Список литературы

1. Алгебра: Пробный учебник для 6 класса средней школы. Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров, М. И. Шабурин. М., 1988.

2. Алгебра: Пробный учебник для 7 класса средней школы. Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров, М. И. Шабурин. М., 1988.

3. Алгебра: Учебник для 6 класса средней школы. Ю. Н. Макарычев, Н. Г. Миндюк, К. С. Муравин и др.; Под ред. С. А. Теляковского. М., 1987.

4. Алгебра: Учебник для 7 класса средней школы. Ю. Н. Макарычев, Н. Г. Миндюк, К. С. Муравин и др.; Под ред. С. А. Теляковского. М., 1987.

5. Алгебра: Учебник для 7 класса средней школы. Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Немков, С. Б. Суворова.; Под ред. С. А. Теляковского. М., 1991.

6. Атахов Р. Соотношение общих закономерностей мышления и математического мышления. Вопросы психологии, №5, 1995.

7. Василевский А. Б. Обучение решению задач по математике. Минск, 1988.

8. Вертгеймер М. Продуктивное мышление. М., 1987.

9. Давыдов В. В. Проблемы развивающего обучения: Опыт теоретического и экспериментального психологического исследования. М., 1986.

10. Калмыкова З. И. Продуктивное мышление как основа обучаемости. М., 1981.

11. Колягин Ю. М., Оганесян В. А. Учись решать задачи.

12. Кострикина Н. П. Задачи повышенной трудности в курсе алгебры 7-9 классов. М., 1991.

13. Крутецкий В. А. Основы педагогической психологии. М., 1972.

14. Крутецкий В. А. Психология математических способностей школьников. М., 1968.

15. Крутецкий В. А. Психология обучения и воспитания школьников.

16. Людмилов Д. С. Некоторые вопросы проблемного обучения математике. Пермь, 1975.

17. Матюшкин А. М. Проблемные ситуации в мышлении и обучении. М., 1972.

18. Особенности обучения и психического развития школьников 13-17 лет. Под ред. И. В. Дубровиной, Б. С. Кругловой. М., 1988.

19. Пичурин Л. Ф. За страницами учебника алгебры. М., 1990.

20. Пойа Д. Как решить задачу: Пособие для учителей. М., 1961.

21. Пойа Д. Математика и правдоподобные рассуждения. М., 1970.