Смекни!
smekni.com

Фізичні основи роботи комп’ютера (стр. 6 из 21)

2.2.3 Тактова частота

Раніше, вибираючи процесор, користувачі звертали увагу лише на частоту. І, загалом, цілком закономірно – до недавнього часу саме вона в першу чергу визначала швидкість роботи всієї системи. За останні десять років цей параметр виріс з 100 МГц до 3,8 ГГц. Чим вище тактова частота, тим швидше перемикаються транзистори, тим більше обчислень виконує процесор за одиницю часу. Оборотна сторона медалі – більше виділення тепла.

Ми звикли вважати, що чим вище частота процесора, тим краще. Intel засвоїла урок і випустила Pentium 4. Його архітектура була «заточена» під можливість збільшення частот до немислимих раніше величин. Але в 2005 році компанія відійшла від минулих гасел...

Причин тому велика кількість, адже продуктивність можна збільшити не тільки шляхом нарощування частот, є і інші шляхи. Розширити кеш-пам'ять, функціональні блоки, інструкції, удосконалити архітектуру. А ось з останнім були проблеми. Архітектура NetBurst опинилася не такою ефективною в плані продуктивності. За один такт Pentium 4 виконує менше роботи, чим Athlon 64. Саме тому сьогодні 2-гігагерцовий Athlon легко перемагає 3-гігагерцовий Pentium. Порівнювати Athlon і Pentium за тактовою частотою вже безглуздо.

Щоб було простіше орієнтуватися в моделях, AMD застосувала систему рейтингів (іноді це називалося «пентіум-рейтингом», як би гіпотетичною продуктивністю процесора Pentium аналогічної частоти). Наприклад, при рейтингу 4000+ фактична частота Athlon'a складає 2,4 ГГц.

Що ж до Intel, то після переходу на 90-нм техпроцес компанія не змогла далі підвищувати частоту. У результаті про випуск 4-ГГц процесора довелося забути, заразом звернути програму рекламування мегагерц, і ввести... модельні номери, як AMD зробила декількома роками раніше.

Вибравши архітектуру (Pentium 4/D або Athlon 64/64 Х2), залишається визначитися з частотою. Тут важливо мати на увазі, що приріст продуктивності не прямо пропорційний зростанню частоти, а декілька менше. Порівняємо, допустимо, процесори Pentium 4 630 (3,0 ГГц) і Pentium 4 660 (3,6 ГГц). Вибравши другий замість першого, ви отримаєте збільшення частоти всього на 20 %, а приріст продуктивності і того менше – 5-15 %! Зате заплатите удвічі більше. Чи треба? На наш погляд, нетреба: набагато важливіше підібрати потужнішу відеокарту або зайвий гігабайт пам'яті [7].

До уваги: висока тактова частота потрібна при кодуванні звуку і відео в реальному часі, частково в іграх. Для офісних програм, фільмів і музики цей показник на сьогоднішній день практично не грає ролі. Комп'ютер буде лише даремно споживати енергію. Для вирішення цієї проблеми навіть існують технології, що динамічно знижують частоту і напругу при низьких навантаженнях. У AMD технологія називається Cool'n'Quiet і здатна зменшувати частоту до 1 ГГц, у Intel є SpeedStep, але частоту вона зменшує всього до 2,8 ГГц.

2.2.4 Два ядра і Hyper-Threading

Якщо частота – це не «наше все», то як ще можна збільшувати продуктивність? Найкардинальнішим рішенням виявилося збільшення числа ядер. Купивши двоядерний процесор, ми отримуємо два процесори в одному комп'ютері. Intel’овська технологія Hyper-Threading працювала схожим чином.

Два процесори в комп'ютері – ідея не нова, але тільки в 2005 році ми отримали подібні продукти. В принципі, всі переваги і недоліки традиційних двопроцесорних систем перенеслися і на двоядерні.

Почнемо з багатозадачності. Сучасні операційні системи підтримують роботу декількох програм. Як це забезпечується? Адже ЦП може виконувати тільки одну програму цієї миті. Все просто: програми виконуються по черзі. Якщо ви граєте, а у фоні працює антивірус, то гра непомітно, але постійно переривається, щоб процесор обробив і інше завдання. При цьому швидкість падає, відгук теж. Перехід на два процесори вирішує проблему: система здатна виконувати дві програми одночасно, не в режимі імітації багатозадачності, а фізично.

З програмою чітко асоціюється потік коду. Традиційно він один у кожній програмі. Тому хай в системі буде хоч двадцять процесорів, потік все одно зможе використовувати тільки один з них. При такому розкладі приросту швидкості не отримати. Інша справа, якщо програма розбиває себе на декілька потоків. У такому разі кожен потік оброблятиме окремий ЦП.

Виникає резонне питання: які програми сьогодні підтримують багатопоточність? Їх немало, кількість тільки росте: Adobe Photoshop CS 2, ABBYY FineReader 9.0, 3D Studio Max 8, кодер DIVX, кодер Windows Media Encoder 9 і тощо. У іграх теж є приклади: «Периметр», Peter Jackson's King Kong [7].

2.2.5 NX/XD-BIT. Набори інструкцій

Випускаючи нові процесори (рис. 2.6), виробники зазвичай прагнуть ввести якомога більше нових функцій. Одні в міру корисні, інші, як повелося, в міру непотрібні...

Почнемо з NX/XD-bit (AMD/Intel). У пам'яті є ділянки з кодом і даними. Деякі шкідливі програми використовували «дірки» в системі, створюючи переповнювання буфера. Зрозуміти ідею просто: чаша розрахована на літр рідини, а вливають туди два літри. Ясна річ, що половина води вийде за вінця, але вся, так або інакше, пройде через чашу. Також і у процесора – після переповнювання буфера процесор покірно обробить все. Апаратна підтримка NX/XD-bit прикриває цей пролом. Але якщо ваш антивірус справляється з роботою, то від цієї функції – ані гаряче, ані холодно.

Далі по списку 64-бітові обчислення. Ви можете поставити Windows XP Professional х64 Edition, але знайти спеціальне ПЗ і потрібні версії драйверів буде складно. Навіть якщо все пройде вдало, особливого зростання продуктивності чекати не доводиться. Єдиний плюс такого переходу – підтримка більшого об'єму оперативної пам'яті. Тут ви не обмежені 2 гігабайтами.

Нарешті, набори інструкцій. Вони покликані збільшити швидкість обчислень, але за умови їх підтримки з боку ПЗ. Ще давно Intel розробила ММХ, далі були SSE, SSE2 і SSE3. AMD адаптувала ММХ, але потім вирішила піти своїм шляхом, запропонувавши 3DNow!

Шлях виявився не дуже вдалим, так що сьогодні майже всі їх процесори підтримують SSE/SSE2 і навіть SSE3. Користь від інструкцій є, але вони не визначають продуктивність ЦП в цілому [7].

Рисунок 2.6 – Зовнішній вигляд процесора

2.2.6 Вибір процесора

По-перше, ми не рекомендуємо вам брати зовсім вже дешеві моделі. Процесори серії Celeron і Sempron націлені на офісні ПК. Вони урізані по частоті шини, по функціях, об'єму кеш-пам'яті – все це сильно б'є по продуктивності, особливо в іграх і «важких» програмах.

А зараз – сакраментальне питання. AMD або Intel? Питання тут не в якості – обидві компанії випускають цілком якісну продукцію. А ось продуктивність... Доводиться визнати, що Intel поступово здає позиції, і лідерство Athlon 64 на даний момент не викликає сумнівів. Особливо – в ігровому плані. До того ж процесори Athlon споживають менше енергії, а технологія Cool'n'Quiet дозволяє ефективніше її економити. Складніший вибір – узяти два ядра або одне? Перші дорожче, але, з іншого боку, зараз вже повним ходом з'являються ігри і програми, оптимізовані під багатоядерні процесори.

Спочатку розглянемо одноядерні лінійки. AMD випускає Athlon 64 для Socket 939 і Socket 754. Другий варіант ми не рекомендуємо: заощадивши копійки, ви отримаєте модель з одноканальним контролером пам'яті і меншою продуктивністю.

Розглянемо процесори Intel. Ця компанія у свою чергу пропонує дві лінійки Pentium 4 - 5хх і 6хх. Основна відмінність між ними – розмір кеша (1 Мбайт проти 2 Мбайт). У плані продуктивності «шоста» серія помітно краще, причому різниці цін між ними практично немає. Отже, якщо ви віддаєте перевагу процесорам Intel, оптимальним вибором стане Pentium 4 630. Старша версія з індексом 670 обійдеться набагато дорожче, а зайві 800 МГц нікого не рятують.

Ситуація з двоядерними моделями не менш цікава. Якщо AMD пропонує досить дорогі, зате продуктивні Athlon 64 Х2, то Intel узяла на озброєння іншу стратегію, випустивши лінійку простеньких двоядерних процесорів Pentium D серій 8хх і 9хх. Остання краще, оскільки у неї вдалося понизити споживання енергії, а різниці в цінах при однаковій частоті немає.

Особливо дорогі процесори – Athlon 64 FX і Pentium Extreme Edition. Їх суть не в тому, щоб бути процесорами, а в тому, щоб коштувати по тисячі доларів. На практиці вони не особливо потужніші за старші версії Athlon 64/64 Х2 і Pentium 4/D. Переплата йде за «ексклюзивність» і трохи більшу частоту [7].


2.3 Флеш-пам’ять

Технологія флеш-пам’яті з'явилася близько 20-ти років тому. Наприкінці 80-х років минулого сторіччя флеш-пам’ять почали використовувати як альтернативу UV-EPROM. З цього часу інтерес до флеш-пам’яті з кожним роком неухильно зростає. Увага, яка приділяється флеш-пам'яті, цілком зрозуміла – адже це сегмент напівпровідникового ринку, який найбільш швидко зростає. Щорічно ринок флеш-пам’яті зростає більш ніж на 15 %, що перевищує сумарне зростання всієї решти напівпровідникової індустрії.

Сьогодні флеш-пам’ять можна знайти в самих різних цифрових пристроях. Її використовують як носій мікропрограм для мікроконтролерів HDD і CD-ROM, для зберігання BIOS в ПК. Флеш-пам’ять використовують в принтерах, КПК, відеоплатах, роутерах, брандмауерах, стільникових телефонах, електронних годинниках, записниках, телевізорах, кондиціонерах, мікрохвильових печах і пральних машинах... список можна продовжувати нескінченно. А останніми роками флеш стає основним типом змінної пам'яті, використовуваної в цифрових мультимедійних пристроях, таких як mp3-плеєри і ігрові приставки. А все це стало можливим завдяки створенню компактних і потужних процесорів. Проте при покупці якого-небудь пристрою, що поміщається в кишені, не варто орієнтуватися лише на процесорну потужність, оскільки в списку пріоритетів вона стоїть далеко не на першому місці.

Почалося це в 1997 році, коли флеш-карти вперше стали використовувати в цифрових фотокамерах.

При виборі портативних пристроїв найважливішим є час автономної роботи при розумних масі і розмірах елемента живлення. Багато залежить від пам'яті, яка визначає об'єм збереженого матеріалу, і тривалість роботи без заряджання акумуляторів. Можливість зберігання інформації в кишенькових пристроях обмежується скромними енергоресурсами. Пам'ять, звичайно використовувана в ОЗП комп'ютерів, вимагає постійної подачі напруги. Дискові накопичувачі можуть зберігати інформацію і без безперервної подачі електрики, зате при записі і зчитуванні даних витрачають її за трьох. Гарним рішенням проблеми виявилася флеш-пам’ять, що не розряджається довільно. Носії на її основі називаються твердотільними, оскільки не мають рухомих частин. На жаль, флеш-пам’ять – коштовне задоволення: середня вартість її мегабайта складає 2 долари, що у вісім разів вище, ніж у SDRAM, не кажучи вже про жорсткі диски. А ось відсутність рухомих частин підвищує надійність флеш-пам’яті: стандартні робочі перевантаження дорівнюють 15 g, а короткочасні можуть досягати 2000 g, тобто теоретично карта повинна чудово працювати при максимально можливих космічних перевантаженнях, і витримати падіння з триметрової висоти. Причому в таких умовах гарантується функціонування карти до 100 років.