Смекни!
smekni.com

Подбор и расчет теплообменной установки, предназначенной для использования в производстве крепленого вина (стр. 2 из 4)

Рассчитаем коэффициенты R и P:

; (2)

.

; (3)

.

По графику определили значение поправочного коэффициента

Находим среднюю температуру потоков:

; (4)

.

Поступающее в аппарат сырьё (креплёноё вино) меняет свою температуру на

, а вода – на
. Следовательно, в соответствии с правилом, средняя температура сырья составит:

;

а средняя температура воды:

.

Определение свойств индивидуальных веществ при средних температурах.

Таблица № 1

Свойства индивидуальных веществ при средних температурах

Свойство Креплёное вино Вода
Средняя температура,
41 14
Плотность,
994 999
Теплоёмкость,
3730 4190
Вязкость,
1,3
10-3
1,155
10-3
Теплопроводность,
0,418 0,587

Определение тепловой нагрузки, расхода хладагента, расчёт ориентировочной поверхности теплообмена, выбор типа и конструкции теплообменника. Так как в начале расчёта коэффициент теплопередачи К не известен, то для нахождения поверхности теплопередачи F принимаем его ориентировочное значение

, которое выбирается на основе опыта эксплуатации теплообменного оборудования.

Определим тепловую нагрузку необходимую для охлаждения сырья до необходимой температуры. Так как в заданном нам процессе не происходит изменение агрегатного состояния ни вещества теплоносителя, ни вещества хладоагента, то тепловая нагрузка находится по формуле:

; (5)

Определим расход хладагента (воды):

; (6)

.

Вычислим ориентировочное значение требуемой поверхности теплопередачи Fор:

; (7)

.

Так как нам выгодно снижение температуры креплёного вина, направим горячий поток в межтрубное пространство, а хладагент – в трубное. В этом случае будут потери теплоты в окружающую среду через кожух теплообменника.

Примем размер труб трубного пучка

мм. Зададимся величиной критерия Рейнольдса для трубного пространства Reтр=10000. Найдём число труб n, которое обеспечит развитое турбулентное движение хладагента.

; (8)

.

Теперь, ориентируясь на величину поверхности теплопередачи Fор и количеством труб, выбираем нормализованный кожухотрубчатый теплообменник.


Таблица № 2

Характеристики нормализованного кожухотрубчатого теплообменника

Параметр Значение
Поверхность теплопередачи Fт, м2 209
Диаметр кожуха внутренний D, мм 1000
Общее число труб n, шт 666
Длина труб L, м 4,0
Площадь трубного пространства Sтр, м2 0,055
Площадь межтрубного пространства Sмтр, м2 0,106
Число рядов труб по вертикали nр 26
Число ходов z 4

Расчёт коэффициентов теплоотдачи для трубного и межтрубного пространств. Расчёт коэффициента теплоотдачи для межтрубного пространства. Определяем объёмный расход креплёного вина:

; (9)

.

Находим скорость потока в межтрубном пространстве:

; (10)

.

Находим значение критерия Рейнольдса Re1 для межтрубного пространства:

; (11)

.

Вычисляем критерий Прандтля:

; (12)

.

Определяем критерий Нуссельта. Примем

, а значение скобки

.

; (13)

.

Теперь находим коэффициент теплоотдачи для межтрубного пространства:

; (14)

.

Расчёт коэффициента теплоотдачи для трубного пространства.

Определяем объёмный расход воды:

; (15)

.

Находим скорость потока в межтрубном пространстве:

; (16)

.

Находим значение критерия Рейнольдса Re1 для трубного пространства:

; (17)

.

Вычисляем критерий Прандтля:

; (18)

.

Определяем критерий Нуссельта. Примем

, а значение скобки

.

; (19)

.

Теперь находим коэффициент теплоотдачи для трубного пространства:

; (20)

.

Определяем расчётное значение коэффициента теплоотдачи Кр

Теплообменник будет изготовлен из обычной углеродистой стали с коэффициентом теплопроводности λст=46,5 Вт/(м∙К). Учтем также появление в процессе эксплуатации аппарата загрязнений как со стороны дистиллята rзаг.1 = 1/5800 Вт/(м2∙К), так и со стороны охлаждающей воды rзаг.2 = 1/1500 Вт/(м2∙К).

Тогда коэффициент теплопередачи будет равен:

; (21)

.

Определение температур стенок.

Определение температуры стенки для горячего потока tст1:

; (22)

.

Определение температуры стенки для холодного потока tст2:

; (23)

.

Расчёт критерия Прандтля для горячего и холодного потоков с использованием физико-химических свойств, взятых при температурах стенки tст1 и tст2.