Смекни!
smekni.com

Сварка барабана роторной жатки комбайна на роботизированном технологическом участке сборки (стр. 1 из 5)

Министерство образования Российской Федерации

Кафедра «»

Реферат

Тема: «Сварка барабана роторной жатки комбайна на роботизированном технологическом участке сборки»

Выполнил:

Группа:

Проверил:


Содержание

Введение

Структура роботизированного технологического участка

Устройство и работа РТК-1

Устройство и работа РТК-2

Устройство и работа РТК-3

Выводы

Литература


Введение

В современных зерноуборочных машинах высокие требования к точности узлов основных агрегатов, ответственных за их технологические характеристики, обусловлены необходимостью достижения максимальной производительности, качества обмолота и снижения потерь зерна.

Роторная жатка ЖР-3500 (рис.1) является скашивающим агрегатом кормоуборочного комбайна Дон-680. Два барабана, вращающиеся встречно со скоростью 2 об/с, подают стебли под ножи дисковых роторов, вращающихся соосно с барабанами со скоростью 4 об/с. Срезанные стебли подаются в приемную камеру и далее в измельчитель комбайна.

Барабан диаметром 1600 мм (рис.2) представляет собой сварную обечайку, образованную четырьмя царгами — стенками 1. Жесткость обечайке придают три кольцевых пояса I, II, III, каждый из которых состоит из четырех сегментов 2, сваренных между собой встык. Фланец 3, на который барабан устанавливается в жатке, соединен с поясами четырьмя спицами 4 и четырьмя связями 5. Перечисленные детали образуют остов барабана 6, к нижнему торцу которого приварены восемь секций съемника 7, а по высоте цилиндрической поверхности обечайки распределены два кольцевых пояса зубчатых сегментов 8, 9 и два пояса гребенок 10и11. Левый и правый барабаны по конструкции являются зеркальным отражением друг друга.

Четыре царги толщиной 3 мм сварены между собой встык односторонними внутренними швами. Каждый пояс I, II, III приварен к обечайке прерывистыми односторонними угловыми швами 100/200 мм, катетом 5 мм. Съемники толщиной 7 мм приварены к нижнему поясу по периметру барабана внахлестку двумя прерывистыми швами 75/150 мм, катетом 5 мм. Зубчатые сегменты толщиной 5 мм и гребенки толщиной 6 мм устанавливаются на обечайке выступами в щелевые отверстия и образуют прорезные сварные соединения, выполняемые изнутри барабана. Соединения спиц и связей с поясами — тавровые односторонние, а с фланцем — нахлесточные, катетом 4 мм. При изготовлении барабана выполняют 356 швов общей протяженностью 21 м.

Захват и подача срезанных стеблей в приемную камеру возможны благодаря тому, что зубья гребенок и сегментов при вращении входят в соответствующие прорези в боковых стенках приемной камеры. Этим и обусловлены жесткие требования к геометрии барабана:

•радиальное биение обечайки не более 2 мм (во избежание контактирования со стенками барабана и приемной камеры)

•торцевое биение плоскости съемников не более 2 мм (во избежание касания ротора);

•биение плоскостей сегментов и гребенок относительно плоскости съемника не более 2 мм (во избежание заклинивания зубьев в пазах стенок приемной камеры);

•отклонение от параллельности привальной плоскости фланца относительно плоскости съемников не более 0,8 мм.

Очевидно, что выдержать при сварке столь жесткие допуски для тонкостенной листовой конструкции диаметром 1600 мм, имеющей такое количество сварных швов, является сложной технической задачей.

Структура роботизированного технологического участка

В процессе подготовки производства жатки на заводе АО «Ростельмаш» первоначально были созданы технологический процесс и сборочно-сварочная оснастка, предусматривающая применение полуавтоматической сварки в среде углекислого газа. В кондукторе сваривали из сегментов три кольца жесткости, на которые затем в другом приспособлении базировали четыре стенки, обжимая их снаружи. В третьем приспособлении в полученный барабан устанавливали и приваривали спицы, связи и фланец, центрируя их относительно обечайки. После этого, поворачивая остов на вращателе, устанавливали и приваривали зубчатые сегменты, гребенки и съемники, не пользуясь оснасткой. В результате применения такой технологии брак по геометрическим параметрам составлял около 40 %, из них половина — брак неисправимый. Для уменьшения биений использовали механическую правку и наложение холостых валиков на связи. Обмер партии барабанов показал, что нарушения формы имеют случайный характер, что свидетельствовало об отсутствии систематической погрешности при сборке и нестабильности технологического процесса. Значения катетов, длины отдельных швов и порядок их наложения имели существенные отклонения от регламентированных. В результате объем последующих доводочных работ при испытании собранной жатки на обкаточном стенде втрое превышал длительность самой обкатки. Возникшая в производстве ситуация потребовала создания стабильной технологии сборки и сварки барабана, обеспечивающей его проектную точность. В связи с этим был проведен анализ технологичности конструкции барабана с целью оценки возможности роботизации процесса его сварки.

Вследствие значительных экономических потерь от брака главной целью создания технологии роботизированной сварки является получение конструкции, отвечающей требованиям проектной документации прежде всего в отношении точности и стабильности геометрии, а также качества сварных соединений. В данном случае, по-видимому, справедлив тезис Г. Гердена о том, что применение роботов как средств автоматизации следует предусматривать не там, где их можно использовать, а там, где без них нельзя обойтись.

При разработке новой технологии изготовления барабана с помощью роботов исходили из следующих соображений. Очевидно прежде всего, что выполнение всех швов на полностью собранном барабане невозможно без использования манипулятора. Однако габаритные размеры и масса изделия (245 кг) требуют позиционера большой грузоподъемности, точность позиционирования которого не может удовлетворить условиям применения роботизированной сварки. К тому же общее количество швов таково, что объем памяти робота, необходимый для их выполнения, намного превосходит возможности последнего. Совместная работа внутри барабана двух роботов проблематична, так как развести во времени и в пространстве траектории их горелок (избежать столкновений) в столь ограниченном пространстве практически невозможно.

Таким образом, с одной стороны, очевидна необходимость расчленения изделия на отдельные технологические узлы, с другой стороны, высокая проектная точность конструкции требовала такой схемы расчленения, при которой узел, определяющий точность всего изделия, должен быть изготовлен в одном кондукторе, тем более что отсутствие переустановок изделия уменьшает возможные отклонения электрода от оси стыка и тем самым повышает качество сварных соединений. Указанные выше взаимоисключающие требования заставили искать определенный компромисс при создании новой технологии.

Варианты расчленения на сборочные единицы анализировали с помощью системы РОБОМАКС для определения доступности для робота и досягаемости им всех швов. В результате анализа был принят следующий вариант. Изготовление барабана осуществляется на трех РТК. На первом из них (РТК-1) спицы 4 и связи 5 приваривают к отдельным сегментам, при этом образуется по две сборочные единицы Т-1 и Т-2 (см. рис.2) для левого и правого барабанов.

На втором комплексе (РТК-2) изготовляют остовы левого и правого барабанов, образуя их из стенок, сегментов, узлов Т-1, Т-2 и фланца. При условии стационарности стенда выполнение всех сварных швов в нижнем положении возможно только при вертикальном расположении оси барабана. Робот, установленный на полу и расположенный вплотную к двум стоящим

рядом сварочным стендам, обслуживает их поочередно. Анализ доступности для горелки сварных швов, выполняемых на данной позиции, показал, что на полностью собранном остове около 25 % швов оставались недоступными. Поскольку дальнейшее расчленение на сборочные единицы не целесообразно, было решено воспользоваться методом последовательного наращивания, чередуя сборочные и сварочные операции. Моделирование такого процесса подтвердило его приемлемость. Детально он будет рассмотрен ниже.

Сваренные остовы левого и правого барабанов поступают на третий роботизированный комплекс (РТК-3), где на двух стендах производится приварка съемника, гребенок и сегментов. Для сварки всех швов в нижнем положении ось барабана, относительно которой кантуется изделие, располагается горизонтально. Робот находится между стендами и обслуживает их поочередно. В то время как на одном стенде робот производит сварку, на другом стенде ведется сборка. Анализ доступности швов показал, что за одну установку можно сварить четверть всего количества швов при условии, что часть их будет располагаться на цилиндрической поверхности под углом к горизонту, достигающим 40°. Таким образом, на стенде осуществляется четырехкратное позиционирование изделия с поворотом на 90° вокруг горизонтальной оси.

Все три РТК технологически взаимосвязаны, что предполагает объединение их в организационно самостоятельное производственное подразделение. Предварительные технико-экономические расчеты показали, что существенные различия длительности сборочно-сварочных операций на отдельных РТК делают нецелесообразным создание автоматической линии сварки барабана с единой системой управления. Поэтому решено было организовать роботизированный технологический участок, объединив отдельные РТК общей механизированной транспортной системой с накопителями между ними. Для левого и правого барабанов необходимо было предусмотреть два отдельных грузопотока со своим технологическим оборудованием.

Учитывая сложность и высокую точность узлов и изделия в целом и значительность потерь от возможного брака, был проведен статистический контроль качества деталей, поступающих на участок. Результаты показали, что для сегментов, спиц и связей, получаемых контурной вырубкой на прессах, а также для фланцев, проходящих токарную обработку, брак не превышает 2 %. Стенку получали контурной вырубкой с последующей гибкой на прессе. При такой технологии брак достигал 50 %, основным дефектом было отклонение от проектного значения радиуса гибки стенки. Местные недогибы или перегибы на базе 150...200 мм вызывали неприлегание стенки к сег­ментам. Зазоры в местах наложения швов достигали 3 мм, что не только не позволяло выполнить качественный шов, но и вызывало недопустимое радиальное биение барабана. Это потребовало усовершенствования технологии изготовления стенки, а в состав участка пришлось ввести специализированное рабочее место для 100 %-ного входного контроля ее геометрических размеров. Браковочным признаком являлся зазор более 1,4 мм, остающийся между стенкой и сегментом после их закрепления в специальном приспособлении. Кроме того, на участке были организованы рабочие места для 100 %-ного контроля геометрии остова барабана и место контроля и исправ­ления брака готовой продукции.