Смекни!
smekni.com

Разработка проекта и проведение исследования прочности стекла на прогиб (стр. 8 из 10)

Теплопроводность характеризует способность тела передавать тепловую энергию в направлении более низких температур.

Единица измерения теплопроводности Вт/(м*°С).

Увеличение в стекле количеств SiO2, Аl2О3, В2О3,Fе2О3 повышает теплопроводность, а ВаО и РbО снижают ее. Теплопроводность промышленных стекол составляет 0,72-0,9 Вт/(м*°С).

При высоких температурах передача тепла теплопроводностью характерна только для тонких (до 0,1 см) слоев стекла. При увеличении толщины слоя увеличивается интенсивность передачи тепла излучением. В связи с этим теплопроводность, определенная без учета толщины образца, называется эффективной теплопроводностью и включает в себя радиационную (лучистую) составляющую.

Для технологических процессов варки стекла и формования изделий основное значение имеет прозрачность стекол для излучения в инфракрасной области спектра (теплопрозрачность). Теплопрозрачность уменьшают окрашивающие оксиды (особенно СоО, NiO, FеО и СuО).

С повышением содержания в стекле этих оксидов роль теплопередачи излучением уменьшается и возрастает роль теплопроводности.

Термическое расширение стекла характеризуется обычно температурным коэффициентом линейного расширения (ТКЛР) — a. Температурный коэффициент линейного расширения характеризует относительное увеличение длины образца стекла при нагревании на один градус.

Температурный коэффициент линейного расширения зависит от химического состава стекла. Наименьшим температурным коэффициентом линейного расширения обладает кварцевое стекло (SiO2). Ввод остальных компонентов увеличивает ТКЛР. Особенно сильно в этом отношении влияние Na2О, К2О, СаО, ВаО, РbО.

Наиболее распространены дилатометрические методы определения ТКЛР. Дилатометры фиксируют удлинение образцов при нагревании в определенном интервале температур.

Температурный коэффициент линейного расширения различных стекол находится в пределах (5-120).10–7 1/°С. Относительное увеличение объема при нагревании тела на 1°С называется температурным коэффициентом объемного расширения. Для твердых тел температурный коэффициент объемного расширения с достаточным приближением может быть принят равным b = Зa.

При определении температурного коэффициента линейного расширения обычно строят график зависимости удлинения образца от температуры (дилатометрическую кривую), по которой можно приближенно установить некоторые характеристические температуры для данного стекла. Каждой из этих температур соответствует определенная вязкость.

Температура начала стеклования Тg соответствует вязкости 1012 Па*С и определяется как точка пересечения прямых, продолжающих прямолинейные участки дилатометрической кривой.

Температура начала деформации соответствует температуре максимума на дилатометрической кривой и вязкости 1010-1011 Па*С.

Термостойкостью называется способность стекла сопротивляться резким изменениям температуры. Мерой термостойкости является температурный перепад, который выдерживает стекло без разрушения. Термостойкость имеет большое значение при использовании стеклотары (бутылок, банок), бытовой посуды (стаканов), термостойких стекол и других изделий. При изменении температуры окружающей среды (воздуха, воды и др.) в помещенном в нее стекле возникают напряжения, под действием которых стекло может разрушиться.

Возникновение напряжений обусловлено следующими факторами:

— низкой теплопроводностью стекла;

— появлением значительных температурных градиентов при нагреве или охлаждении;

— неравномерным изменением размеров и объема отдельных участков нагревающегося или охлаждающегося стекла.

Рассмотрим механизм возникновения напряжений в твердом стекле применительно к условиям эксплуатации изделий. Для наиболее массовых изделий (стеклянная тара, бытовая посуда, термосные колбы), температуры окружающей среды (воды) не превышают 100°С.

В этом случае стекло реагирует на температурные изменения как упругое тело и возникают временные термоупругие напряжения, исчезающие (если стекло не разрушилось) при выравнивании температуры. Пусть имеется стеклянный шар, который мысленно можно разделить на ядро и внешний слой. Последний в свою очередь разделен на Если шар нагрет, все его части имеют одинаковую температуру, поэтому напряжения внутри шара нет. При резком охлаждении внешний слой будет остывать значительно быстрее, чем ядро, поэтому объем шара уменьшается неравномерно. Если бы секторы внешнего слоя не были связаны между собой, то каждый из них сжался бы, а между ними образовались свободные пространства. Но так как частицы стекла во внешнем слое связаны, между ними возникают напряжения растяжения, которые могут довести внешний слой до разрушения, т.е. до образования радиальных трещин, идущих от поверхности. Между внешним слоем и ядром будут создаваться напряжения сжатия, так как ядро противодействует сжатию внешнего слоя под действием более резкого охлаждения последнего.

При резком нагревании внешний слой, нагреваясь быстрее ядра, стремится увеличиться в объеме и отслоиться от ядра. Но так как он связан с ядром, то между ними возникают напряжения растяжения. Между частицами внешнего слоя, которые не могут оторваться от ядра, но увеличиваются в объеме, возникают напряжения сжатия.

Если принять во внимание, что стекло сопротивляется растяжению во много раз хуже, чем сжатию, а прочность стекла сильно зависит от состояния поверхности, и резкий тепловой удар получает всегда поверхность стекла, то для стекла более опасно быстрое охлаждение, чем нагревание.

Термостойкость стекла зависит главным образом от температурного коэффициента линейного расширения, модуля упругости, предела прочности при растяжении.

В основном термостойкость стекла определяется температурным коэффициентом линейного расширения: чем он меньше, тем выше термостойкость. Для стеклоизделий термостойкость в значительной степени зависит от состояния поверхности и однородности стекла. Сколы, царапины, трещины, неоднородность состава и плохой отжиг — все это резко снижает термостойкость стекла.

Плохая теплопроводность способствует неравномерному распределению напряжений по сечению охлаждающего стекла при термическом воздействии, поэтому, чем тоньше и равномернее по сечению стенки изделия, тем выше его термостойкость. Именно этими факторами обеспечивается высокая термостойкость термосных колб.

Оптические свойства и характеристики

Луч света при переходе из одной среды в другую меняет свое направление, что связано с изменением скорости распространения света в различных средах. При прохождении в воздухе и через плоскопараллельную стеклянную пластинку падающий луч образует определенные углы с нормалью к поверхности раздела сред в точке падения. Если луч идет из воздуха в стекло, то угол a будет углом падения, а угол b — углом преломления.

В данном случае воздух является оптически менее плотной средой, чем стекло. Показатель преломления может быть определен из соотношения

n = sin a / sin b

Показатель преломления среды не зависит от угла падения луча на поверхность среды, но зависит от свойств самой среды и длины волны падающего света. Чем больше длина волны падающего света, тем меньше показатель преломления, поэтому луч белого (смешанного) света, входя в стекло под углом к поверхности, расщепляется на пучок расходящихся цветовых лучей, т.е. подвергается дисперсии.

Если параллельный пучок белого света, ограниченный узкой щелью, падает на стеклянную призму, то на экране, расположенном за призмой, обнаруживается картина различных цветов, называемая спектром. В спектре наблюдается строгая последовательность этих цветов, переходящих от одного к другому, начиная от фиолетового и кончая красным. Причиной разложения света является зависимость показателя преломления от длины волны. Чем короче длина волны, тем меньше угол преломления, поэтому фиолетовые лучи преломляются больше, чем красные.

Разность показателей преломления для голубой коротковолновой F-линии и красной длинноволновой С-линии называется средней дисперсией, т.е. dn = nF – nC .

Коэффициент дисперсии определяется по формуле:

n = (n – 1) / dn.

Показатель преломления и дисперсия сильно зависят от состава стекла. Показатель преломления повышают РbО, ВаО, СаО, ZnO, Sb2О3, щелочные оксиды. Добавка SiО2 снижает показатель преломления.

Дисперсия заметно возрастает при введении РbО и Sb2О3. ВаО и СаО сильнее влияют на показатель преломления, чем на дисперсию. Показатель преломления и коэффициент дисперсии — важнейшие свойства оптических стекол. Широкая номенклатура стекол с различными значениями этих свойств позволяет формировать различные виды изображений объектов, создавать разнообразные приборы и оборудование, начиная от микрообъектива микроскопа до многометрового зеркала телескопа.

Для производства высокохудожественных изделий бытовой посуды, подвергающихся декоративному шлифованию, используют в основном стекло, содержащее до 30% РbО. Такие стекла дают хорошую “игру света” в гранях за счет сильного влияния РbО как на показатель преломления, так и на дисперсию. Зависимость показателя преломления от содержания РbО при введении его вместо SiO2 в промышленные составы хрусталей можно считать прямо пропорциональной.

Коэффициент отражения — отношение светового потока, отраженного стеклом, к световому потоку, падающему на него. Количество света, отраженного стеклом, тем больше, чем больше угол его падения. Количество света, отраженного от поверхности стекла, составляет около 4%. Коэффициент отражения зависит от состояния поверхности и наличия на ней различных веществ.