Смекни!
smekni.com

Физико-химические основы процесса пайки (стр. 3 из 4)

Рис. 7. Схема ультразвуковой пайки

С помощью УЗ-металлизации удается соединять непаяемые материалы — керамику, стекло, ферриты и др. Однако это требует специальных припоев, объективного контроля режимов процесса (амплитуды и частоты колебаний), а также специальных мер против повышенного окисления припоя.

Плазмохимический способ заключается в использовании энергии потока ускоренных ионов активных газов, получаемых в вакууме при ионно-плазменном или магнетронном распылении. Воздействие ионного луча на поверхность металла приводит к испарению оксидной пленки в зоне обработки. Недостатком является необходимость высокого вакуума, сложного технологического оборудования, что ограничивает применение метода.

Взаимодействие на границе "основной металл — жидкий припой" связано с процессами смачивания и растекания припоя по паяемой поверхности. Процесс смачивания основного металла припоем состоит в замене межатомных связей, возникших между металлами в твердой фазе, на металлическую связь атомов на границе раздела между ними. При этом взаимодействие сил поверхностного натяжения определяет контактный угол смачивания q (рис.6.11). Условию равновесия капли на поверхности отвечает минимум свободной поверхностной энергии Еп, под которой понимают избыток энергии поверхностных атомов вследствие несбалансированности сил связи в решетке. При этом изменение поверхностной энергии описывается уравнением Юнга:

,

Из этого выражения следует, что

.

Величина cosq служит параметром для количественной оценки степени смачивания:

1) полное смачивание при cos q = 1, q = 0;

2) ограниченное смачивание при 0 < cos q£ 1 (0 £q£ 90o, σ2,3£ σ 1,3);

3) несмачивание при –1 £ cos q < 0 (90o£q < 180o, σ 2,3 > σ 1,3).

Работа сил адгезии Wа связана с образованием межфазной границы с энергией σ 2,3 вместо единичных поверхностей с энергиями σ 1,2 и σ 1,3:

.

Для преодоления сил сцепления частиц внутри самой жидкости (сил когезии) необходимо затратить работу сил когезии по образованию двух единичных поверхностей жидкости с энергиями σ 1,2, т. е.

.

С учетом приведенных выражений можно получить формулу

.

Жидкие металлы и сплавы обладают более высоким поверхностным натяжением, чем неметаллические жидкости. Так, для припоя типа ПОС 61 σ1,2 = 0,5 Н/м, что на порядок превышает поверхностное натяжение воды. В этом случае образование связи под действием сил Ван-дер-Ваальса не может обеспечить смачивание. Для выполнения при пайке условия смачивания на межфазной границе должны образовываться высокоэнергетические межатомные связи химической природы с большой работой сил адгезии Wа (металлические, металло-ковалентные и др.). Реальные пути улучшения смачивания заключаются в применении защитных газовых сред (снижение σ1,2) и более тщательной очистке контактирующих поверхностей твердой и жидкой фаз от оксидных пленок (снижение σ2,3).

1  газ; 2  припой; 3  основной металл

рис.8. Схема равновесия сил поверхностного натяжения

При рассмотрении условий равновесия системы "припой—основной металл" во флюсовой среде вместо σ1,2 вводят σ2,4 (межфазное натяжение на границе "флюс—основной металл"). При этом σ2,4< σ1,2, σ3,4< σ1,3, а уравнение для краевого угла имеет вид

.

Для реализации условия смачивания в данном случае необходимо вытеснение припоем прореагировавшего флюса по мере удаления оксидной пленки с поверхности основного металла, что выполняется при σ2,3 < σ3,4. При достаточном химическом сродстве компонентов основного металла и припоя энергия s2,3 мала, а работа Wа велика. В этом случае реализуется второе условие смачивания: Wа > σ2,4 .

1  газ; 2  флюс; 3  припой; 4  основной металл

рис. 9. Схема равновесия сил поверхностного натяжения во флюсовой среде

Растекание припоя по поверхности основного металла происходит в результате взаимодействия сил поверхностного натяжения и сопровождается сближением жидкой и твердой фаз. Коэффициент растекания определяется из условия разности работ сил адгезии и когезии:

.

При смачивании и растекании припой заполняет зазоры между соединяемыми деталями, образуя мениски вблизи вертикальных стенок и проявляя тем самым капиллярные свойства. Разность давлений, действующих на искривленную поверхность жидкости, называют капиллярным давлениемpк, которое определяется уравнением Лапласа:

,

где p1, p 2 — давление жидкости для выпуклой и вогнутой поверхностей соответственно; R1, R2 — радиусы кривизны рассматриваемого элемента поверхности.

Для выпуклой поверхности Рк считают положительным и направленным внутрь жидкости, для вогнутой поверхности Рк отрицательно и направлено наружу от поверхности жидкости. При малом диаметре D капилляра свободная поверхность жидкости имеет форму сферы (рис. 10) радиусом

.

Подставив значение радиуса мениска в уравнение Лапласа, получим

.

Разность давлений p1p 2 уравновешивается столбом расплавленного припоя высотой h:

.

Из уравнений видно, что высота подъема припоя в капилляре круглого сечения прямо пропорциональна его поверхностному натяжению и смачивающей способности и обратно пропорциональна диаметру капилляра и плотности припоя:

.

Отличие расплавов припоев от обычных жидкостей состоит в том, что жидкий припой представляет собой систему, состоящую из нескольких компонентов, и в процессе его растекания происходит физико-химическое взаимодействие компонентов и основного металла, дополнительное растворение элементов основного металла в припое, взаимодействие с газовыми и флюсующими средами. При вытеснении припоем флюса из капилляра высота подъема припоя будет определяться выражением

.

В горизонтальном капилляре шириной h для припоя с вязкостью h время затекания t на длину капилляра l определяется следующим образом:

.

На втором этапе физико-химического взаимодействия припоя и основного металла основную роль играют процессы диффузии. Теоретически процесс диффузии при постоянной температуре и стационарном во времени потоке вещества описывается первым уравнением Фика:

,

где m — количество диффундирующего вещества; D — коэффициент диффузии; С — концентрация вещества; x— координата. Минус указывает на то, что процесс диффузии идет в направлении уменьшения концентрации вещества.

рис. 10. Схема подъема жидкости в капилляре

В реальных условиях скорость диффузии — величина переменная во времени, поэтому процесс диффузии описывается вторым уравнением Фика:

,

где

— скорость изменения концентрации диффундирующего вещества.

Коэффициент диффузии зависит от температуры:

,

где D0 — коэффициент, зависящий от типа кристаллической решетки; Q — энергия активации диффузии; R — универсальная газовая постоянная: R = 8,31 кДж/(кмоль·град); Т — абсолютная температура.

Для практических целей решение второго уравнения Фика имеет вид

,

где Сх — концентрация диффундирующего вещества на глубине x от поверхности; С0 — концентрация элемента на поверхности; Ф — интеграл функции ошибок Гаусса.

На скорость процесса диффузии помимо температуры оказывает влияние состояние металла. Наклеп, сопровождающийся искажением кристаллической решетки и появлением вакансий, увеличивает диффузию по границам зерен и вдоль дислокации, что приводит к увеличению диффузионной зоны. Диффузионные процессы при пайке позволяют увеличить механическую прочность соединений, однако образование интерметаллидных соединений в спае типа Cu3Sn, AuSn2 при глубокой взаимной диффузии компонентов вызывает снижение прочности паяных соединений.