Смекни!
smekni.com

Проектирование водоочистных комплексов хозяйственно-питьевого водоснабжения (стр. 3 из 4)

На генплане должны быть показаны с указанием диаметров трубопроводы исходной и фильтрованной воды; трубопроводы подачи, отвода и оборота промывной воды; промышленная и хозяйственно-бытовая канализация, хозяйственно-противопожарный водопровод, отводной трубопровод, теплосеть, кабели и другие коммуникации.


Рис. 18.3. Компоновка водоочистных сооружений.

1 — осветлители со взвешенным осадком; 2 — смеситель; 3 — скорые фильтры; 4 — расходные баки коагулянта; 5 — растворные баки-хранилища коагулянта; 6 — насосы-дозаторы и воздуходувки; 7 — подача чистой воды потребителю; 8 — мастерские; 9 — насосная станция II подъема; М — бытовые помещения; 11 — всасывающие трубопроводы из резервуаров чистой воды; 12 —• отвод чистой воды в резервуаре; 13 — сброс осадка из осветлителей; 14 — сброс промывной воды от фильтров; 15 — подача исходной воды

При решении генплана водоочистного комплекса необходимо предусматривать возможность его расширения на расчетный период. С этой целью на генплане предусматривают площадку, обозначаемую пунктиром, при этом трассировка трубопроводов первой очереди должна непременно учитывать последующее расширение. Стороны здания, в направлении которых будет производиться пристройка при расширении комплекса, не должны загромождаться постройками постоянного типа, подземными сооружениями и коммуникациями. Каналы и трубы обвязки сооружений должны быть рассчитаны с запасом на возможность пропуска воды после реконструкции отдельных водоочистных сооружений или целых блоков.

При проектировании генерального плана водоочистного комплекса необходимо предусматривать минимальную протяженность путей перемещения реагентов; максимально возможную механизацию погрузочно-разгрузочных работ и смены загрузки фильтровальных аппаратов; маневренность эксплуатации как отдельных технологических сооружений, так и целых блоков.

Планировка территории комплекса должна обеспечивать отвод атмосферных осадков от всех технологических сооружений, отдельных; зданий и с площадки последних. На территории комплекса помимо дорог предусматривают устройство тротуаров и озеленение.

При решении компоновки блока основных сооружений преследуют цель логической последовательности передачи воды от сооружения к сооружению при минимальной протяженности коммуникации, учитывая возможность интенсификации работы отдельных сооружений или расширения комплекса.

Использование технологии обработки воды в осветлителях со слоем взвешенного осадка на водоочистных комплексах производительностью до 50 тыс. м3/сут позволяет разместить в одном здании все основные технологические сооружения, реагентное хозяйство, входные устройства (вариант) и НС II подъема. При этом смесители, осветлители и фильтры выделены в отдельный зал. При большей производительности водоочистного комплекса служебные помещения выносятся в двухэтажное отдельное здание, входные устройства стыкуют с основными сооружениями или размещают в отдельно стоящем здании реагентного хозяйства. В этом случае в состав реагентного цеха включают отделения коагулирования, флокулирования, фторирования и могут быть еще отделения углевания, известкования и др. Для удобства эксплуатации служебный корпус и реагентный цех проходными галереями соединяются с блоком основных сооружений.

При решении компоновки водоочистных комплексов по одноступенчатой схеме с контактными осветлителями при производительности до 50 тыс. м3/сут входные устройства (микрофильтры, контактные камеры) размещают в отдельном здании, а реагентное хозяйство стыкуют с основными сооружениями, либо входные устройства сочетают с реагентным хозяйством и располагают в отдельном блоке. В обоих случаях для НС II подъема предусматривают отдельные здания.

Контактные осветлители, как правило, располагают в два ряда и предусматривают остекленные перегородки, отделяющие зеркало воды в них от остальных помещений. При производительности 100 тыс. м3/сут и выше входные устройства и основные сооружения устраивают в два параллельно работающих блока (по очередям строительства), которые размещают в одном здании.

Повторное использование промывной воды и обработка осадка на водоочистных комплексах

В целях рационального использования воды и охраны среды обитания на водоочистных комплексах применяют повторное использование воды после промывки фильтровальных сооружений и обработку осадка от сооружений I ступени очистки и реагентного хозяйства для его утилизации. Оборот промывной воды особенно эффективен при значительном удалении водоочистных комплексов от водоисточников или при большой разнице отметок между ними.

Возможны две схемы оборота промывной воды. При двухступенчатой очистке: промывные воды от фильтров, пройдя песколовку, поступают в резервуар-усреднитель, а из него без отстаивания или после него равномерно передаются в головной узел очистных сооружений. При очистке воды только фильтрованием промывные воды через песколовку поступают в отстойники периодического действия; время отстаивания 1 ч, дозы полиакриламида 0,08...0,16 мг/л (меньшие дозы при обработке цветных маломутных вод). При отсутствии предварительного хлорирования оборотные промывные воды необходимо обеззараживать хлором дозой 2... 4 мг/л.

В технологии обработки промывных вод и осадка предусматривают следующие основные сооружения: резервуары, отстойники, сгустители, накопители или площадки замораживания и подсушивания осадка. Перспективно механическое обезвоживание и регенерация коагулянта из осадка.

На установках обезжелезивания воды промывные воды после фильтров подвергают отстаиванию в течение не менее 4 ч, а затем осветленную воду используют повторно. Осадок можно использовать для получения охры.

Количество резервуаров промывных вод принимают не менее двух. Объем каждого из них принимают в соответствии с с графиком поступления и перекачки промывных вод. Отстойники промывных вод рассчитывают, исходя из тех же соображений. Образующийся осадок передают в сгустители на дополнительное уплотнение или на сооружение обезвоживания осадка.

Сгустители с медленным механическим перемешиванием используют для ускорения уплотнения осадка из сооружений ступени очистки воды и из реагентного хозяйства, а также осадка из отстойников промывных вод. Габариты радиального отстойника-сгустителя принимают следующие: диаметр — до 18 м, средняя глубина — 3,5 м, уклон дна к грязевому приямку 8°, скорость движения конца вращающейся формы — 0,015... 0,03 м/с. Продолжительность цикла сгущения принимают 5... 10 ч.

Накопители предусматривают для складирования и обезвоживания осадка с удалением осветленной воды и воды, выделившейся при его уплотнении. Расчетный период передачи осадка в накопитель принимают не менее пяти лет. В качестве накопителей используют отработавшие карьеры, овраги или спланированные площадки глубиной не менее 2 м. Число секций накопителя принимают не менее двух, работающих попеременно.

Площадки замораживания для обезвоживания осадка устраивают в районах с периодом устойчивого мороза не менее мес. в году с последующим его удалением через 1 ... 3 года в места складирования.

Образующийся при обработке воды осадок подвергают обезвоживанию в естественных или искусственных условиях. Большинство водоочистных комплексов направляют образующиеся осадки на иловые карты или площадки, где они подвергаются испарению и вымораживанию в естественных условиях. В зависимости от географического положения очистных сооружений сезонных климатических условий влажность осадка может уменьшиться с 98,5... 99 до 78... 80%, за период между наполнением карт. Нагрузка на площадки может быть уменьшена За счет возврата осветленной части воды на очистные сооружения. Подобная рециркуляционная система не приносит экономических выгод, так как возврат воды приводит к дополнительным затратам. Однако, ее функционирование оправдано необходимостью уменьшить загрязнение рек и водоемов.

В большинстве случаев площадки представляют собой земляные емкости на естественном грунтовом основании с системой водосливов отстоенной воды и дренажами из труб. На практике одну карту заполняют до предела, после чего в течение 2...3 лет уменьшается влажность осадка на 60... 70%. При такой влажности осадок погружают на самосвалы и вывозят на заранее выбранную территорию.

Механическое обезвоживание осадка технически может быть применено на" очистных комплексах любой производительности. В качестве аппаратов используют центрифуги, вакуум-фильтры и фильтр-прессы (рис. 18.4). Вакуум-фильтры при обезвоживании осадков от очистки маломутных вод сульфатом алюминия не обеспечивают необходимое уменьшение влажности.

Рис 4. Технологическая схема обработки осадков на камерном фильт-прессе

1 — уплотнитель; 2 — дозатор ПАА; 3 — усреднитель-отстойник осадков из отстойников или осветлителей со взвешенным слоем осадка; 4 — Усреднитель-отстойник промывных вод фильтровальных сооружений; 5 — насос; 6 — сборник осадков; 7 — дозатор флокулянтов и вспомогательных веществ; 8 — промежуточная емкость; 9 — нагревательный элемент; 10 — компрессор; 11 — монжус; 12 —камерный фильтр-пресс; 13 — транспортер; 14 — бункер; 15 — автосамосвал

Для механического обезвоживания требуется предварительная подготовка осадка, которая заключается в разрушении гелеобраз- ной структуры гидроксида алюминия. Хороший эффект дает применение извести. Использование фильтр-пресса считается экономичным для осадков вод средней цветности и мутности при дозах извести не более 50 . . . 70% от массы сухого осадка.