Смекни!
smekni.com

Производство химических волокон (стр. 6 из 8)

Рисунок 9 - Схема механизма холодного и горячего вытягивания технической нити машины КВ-300-И: 1 - паковка с невытянутым волокном, 2 - натяжные нитепроводники; 3 - нитеводитель; 4 - питающее устройство; 5 - тормозная палочка; 6 - верхний вытяжной диск; 7-нагреватели; 8 - нижний вытяжной диск; 9 - нитепроводник; 10 - копе; 11 - кольцо с бегунком; 12 - веретено.

При вытягивании полиамидных нитей, как и многих других синтетических нитей, получаемых из кристаллизующихся полимеров, наблюдается характерный эффект образования шейки. Для фиксации места образования шейки и повышения равномерности вытягивания нити между питателем и галетой (в поле вытягивания) установлена круглая тормозная палочкаиз твердого материала (агат, корунд и др.), вокруг которой нить делает один оборот. В результате непрерывного трения нити палочка сильно разогревается (до 80°С). Таким образом, образование шейки на нити (при сходе с палочки) обусловлено притормаживанием и нагреванием ее палочкой. Тормозная палочка применяется, как правило, при получении технических нитей; тонкие нити можно вытягивать и без палочки. Описанный процесс называется холодным вытягиванием.

Капроновые нити технического назначения линейной плотностью 93,5 и 187текс подвергаются комбинированному вытягиванию: холодному и горячему. При этом в зону вытягивания помещают приспособление для нагревания нитей до 150 - 180°С.

При фильерной вытяжке волокна из расплава площадь поперечного сечения волокна на участке от выхода из фильеры до приемных роликов гиперболически уменьшается. Типичное изменение площади поперечного сечения и радиуса полимерного волокна показано на графике 2. Участок, на котором происходит вытяжка волокна, имеет протяженность примерно 200см. Способа обнаружения момента начала затвердевания волокна пока не существует.

По характеру зависимостей A (z) и R (z), представленных на графике 2, можно видеть, что поле скоростей на участке вытяжки волокна описывается функциями вида:

. Следовательно, чтобы описать течение, нужно совместно решить r - и z-компоненты уравнения движения, уравнение энергетического баланса и уравнения состояния при соответствующих граничных условиях. Это довольно сложная задача, особенно при необходимости использования нелинейного уравнения реологического состояния.

График 2 - Кривые изменения площади поперечного сечения и радиуса волокна на участке вытяжки расплава (z - расстояние от выхода из фильеры). Материал, температура и скорость отбора волокна соответственно 1 - капрон; 265°С; 300 м/мин; 2 - полипропилен; 262°С; 350 м/мин.

В настоящее время еще не разработан математический аппарат, позволяющий точно предсказать закон уменьшения радиуса волокна или распределение скорости течения на участке интенсивного уменьшения радиуса волокна. Правда, несколько попыток оценить скорость, радиус волокна и температуру в зависимости от расстояния от фильеры уже предпринято. Первыми, кто исследовал неизотермическое формование волокна, были Кейс и Матсуо. В работе Хана обобщены результаты, полученные упомянутыми авторами, и предложены два уравнения, описывающие распределение единственной компоненты скорости

и

Т = Т (z) для установившегося режима:


где ε - коэффициент лучеиспускания,

- массовый расход,
- теплоемкость при постоянном объеме, FD- сила сопротивления воздуха (приходящиеся на единицу площади), равная

где К - поправочный коэффициент; индекс а указывает, что соответствующие характеристики относятся к окружающему воздуху.

Хан дополнил эти два уравнения переноса степенным законом течения при растяжении, учитывающим температурную зависимость вязкости:

где

,
- вязкость при нулевой скорости сдвига, e- ширина,
- энергия активации вязкого течения.

Решение этой системы уравнений можно получить только численным методом. Полученные результаты имеют физический смысл на участке оси zдо момента начала кристаллизации, когда тепловыделение за счет экзотермического эффекта кристаллизации снижает скорость охлаждения расплава (график 3). Здесь приведены результаты измерения температуры поверхности волокна в процессе вытяжки из расплава в зависимости от расстояния z.

В результате кристаллизации внутренних слоев по мере увеличения расстояния от фильеры температура поверхности волокна может даже повышаться.


График 3 - Зависимость температуры поверхности волокна от расстояния от фильеры z. Скорость отбора волокна: 1 - 50 м/мин; 1,93 г/мин; 2 - 100; 1,93; 3 - 200; 1,93; 4 - 200; 0,7.

Сейчас наибольшее внимание привлекают к себе две проблемы, связанные со стабильностью процесса вытяжки волокна из расплава, а именно: резонанс при вытяжке и волокноформуемость. При наличии резонанса при вытяжке наблюдается регулярная и постоянная периодичность изменения диаметра вытягиваемого волокна. Волокноформуемость означает способность полимерного расплава растягиваться без разрыва из-за образования "шейки" или когезионного разрушения.

Рисунок 10 − Кристаллизация линейного волокна при формовании волокна. Морфология структуры, развивающейся в процессе вытяжки волокна (1 - сферолитная структура; 2 - зародыши кристалла, складчатая ламель; 3 - зародыш кристалла, выпрямленная ламель). Заштрихованные участки заняты расплавом. Скорость отбора волокна: а - очень маленькая; б - маленькая; в - средняя; г - высокая.

Физически явление резонанса при вытяжке можно представить себе следующим образом. На участке между выходом из фильеры и тянущими роликами общая масса экструдируемого материала может меняться во времени, поскольку, несмотря на постоянство скорости поступления материала на этот участок, скорость отвода массы не контролируется (регулируется только скорость отбора волокна, но не его диаметр). Поэтому когда вблизи приемных роликов нить утончается, то рядом с этим местом диаметр нити увеличивается, что приводит к чередованию толстых и тонких участков нити. Вскоре утолщенный участок нити попадает на приемные ролики. Скорость отвода массы увеличивается, вследствие чего нить снова утончается, и возникает периодическое изменение диаметра. Резонанс при вытяжке наступает при критическом значении кратности вытяжки (т.е. отношения скорости нити на тянущих роликах к скорости нити на выходе из фильеры). С уменьшением кратности вытяжки и протяженности участка вытяжки уменьшается отношение максимального значения диаметра волокна к его минимальному значению. Критическое значение кратности вытяжки составляет примерно 20,2. Для аномально-вязких жидкостей критическая кратность вытяжки оказывается несколько меньше 20,2 в случае псевдопластичных жидкостей и больше 20,2.

3.5.2 Крутка нитей

В результате вытягивания и кручения нитей на крутильно-вытяжных машинах получают нить с величиной крутки от 50 до 110 витков/м в зависимости от скорости вытягивания и частоты вращения веретен.

Капроновые нити текстильного ассортимента в зависимости от назначения выпускаются с пологой (до 200 витков/м) и с повышенной круткой (более 200витков/м). Нормы повышенной крутки для различных нитей текстильного ассортимента неодинаковы − скорость кручения увеличивается с понижением линейной плотности нити:

Линейная плотность, текс 29 15,6 6,7 5 3,3

Величина крутки, витки/м 200 200 600 800 1000

Докручивание вытянутого капронового волокна до заданной крутки, т.е. окончательное кручение капроновой нити. Нити докручиваются и одновременно перегоняются на перфорированные бобины с образованием паковки, соответствующей по характеру раскладки нити, плотности и форме намотки требованиям отделки нити на бобине.

Скорость движения нити на этажной крутильной машине при пологих крутках составляет 60 − 90 м/мин, частота вращения веретена 900 − 12000 об/мин. Для получения нити с повышенной круткой могут применяться крутильные машины с веретенами двойного кручения и соответственно более низкими скоростями движения нити.

Для кручения технических капроновых нитей линейной плотности 93,5 и 187 текс, предназначенных для изготовления корда, используются различные схемы кручения и применяются разные крутильные машины. Двухпроцессное кручение кордных нитей осуществляется на двух кольцекрутильных машинах первой и второй крутки. По двухпроцессному способу изготавливают кордную нить в два и большее число сложений. Для этих же целей применяются кольцекрутильные машины с веретенами двойного кручения.