Смекни!
smekni.com

Фрикционные передачи (стр. 1 из 2)

Титульный лист
Содержание


Введение. 3

2 Достоинства и недостатки фрикционных передач. 7

2.1 Достоинства фрикционной передачи. 7

2.2 Недостатки фрикционной передачи. 7

3 Виды скольжения во фрикционных механизмах. 8

4 Расчет фрикционных передач. 9

5 Фрикционные вариаторы.. 12

Заключение. 14

Литература. 15


Введение


Передачи служат для преобразования вращения с изменением по величине или знаку угловых скоростей вращающихся систем и соответственно крутящих моментов на осях валов. Они нахо­дят широкое применение, главным образом, в приводах от дви­гателя к рабочим органам машин.

Различают два основных вида передач:

1) передачи зацеплением:

- зубчатые;

- червячные;

- цепные;

- передача "винт-гайка";

2) передачи трением:

- ременные;

- фрикционные.

Фрикционная передача — кинематическая пара, использующая для передачи механической энергии силы трения.

Трение между элементами может быть сухое, граничное, жидкостное. Жидкостное трение наиболее предпочтительно, так как значительно увеличивает долговечность фрикционной передачи.

Фрикционная передача (от лат. frictio, родительный падеж frictionis — трение), механическая передача, в которой движение передаётся или преобразовывается с помощью сил трения между телами качения — цилиндрами, конусами, прижимаемыми друг к другу. Фрикционные передачи применяют для передачи движения между валами с параллельными (Рисунок 1; а) и пересекающимися осями, для преобразования вращательного движения в винтовое (Рисунок 1; б) и вращательного в поступательное (Рисунок 1; в, г). Они выполняют с постоянным и переменным передаточным отношением.

Пары качения изготовляют из закалённых до высокой твёрдости сталей для передач, преимущественно работающих в масле (требуют высокой точности изготовления); из стали и пластмассы (текстолит или специальные фрикционные пластмассы) — для передач, работающих всухую.

Рисунок 1 – Фрикционная передача


1 Классификация фрикционных передач


Фрикционные передачи классифицируются:

1. По расположению осей вращения валов в пространстве:

· с параллельными осями

· с пересекающимися осями

2. По взаимному расположению поверхностей контакта:

· с внешними контактами

· с внутренними контактами

3. По возможности варьирования передаточного отношения:

· с постоянным передаточным отношением (нерегулируемые) - применяют в приборах, так как создание небольших потребных сил сжатия тел качения не вызывает трудностей. Широко распространены передачи колесо - рельс и колесо - дорожное полотно в самоходном транспорте.

· с переменным передаточным отношением (регулируемые) – применяют чаще всего в машиностроении для бесступенчатого регулирования скорости, еще такие передачи называют бесступенчатыми. В свою очередь бесступенчатые фрикционные передачи по форме основного тела качения (у которого меняется радиус качения) подразделяют на дисковые (лобовые), конусные, шаровые и торовые.

Примеры некоторых фрикционных механизмов приведены на Рисунке 2.

Рисунок 2 - Фрикционные механизмы. А) Цилиндрические катки с постоянным передаточным отношением; Б) Конические катки с постоянным передаточным отношением; В) Вариатор с коническими валами; Г) Фрикционный механизм с коническими валами и постоянным передаточным отношением; Д) Лобовой вариатор

2 Достоинства и недостатки фрикционных передач


2.1 Достоинства фрикционной передачи

1. простота конструкции, изготовления и эксплуатации

2. Легкость осуществления бесступенчатого регулирования частоты вращения выходного вала (передаточного отношения)

3. Легкость включения и переключения

4. Сравнительная бесшумность в работе

5. Возможность при небольших частотах вращения и нагрузках самозащиты от перегрузок и поломок, благодаря пробуксовке (при буксировании ведомое звено затормаживается или даже останавливается)

2.2 Недостатки фрикционной передачи

1. Необходимость введения специальных нажимных устройств, вызывающих возникновение больших сил на опоры (в 10 и более раз превосходящих передаваемые нагрузки), усложняющих конструкцию опорных устройств и снижающих к.п.д. передач

2. Повышенный из-за буксования от недостаточной силы прижатия, износ рабочих тел;

3. Невозможность получения точных значений передаточных отношений из-за проскальзывания. Таким образом, исключается возможность применения фрикционных передач там, где недопустимо накопление погрешности относительного расположения валов.

3 Виды скольжения во фрикционных механизмах


Различают три вида скольжения во фрикционных механизмах

1. геометрическое скольжение – обусловленное геометрией элементов передачи

2. буксование – возникающее, когда окружная сила превышает силу трения в точке контакта

3. упругое скольжение – вызывается упругими деформациями волокон материала ведущего и ведомого катков в зоне их контакта)

Процесс упругого скольжения весьма сложен, но его можно пояснить следующим образом. Волокна материала ведущего катка (Рисунок 3, метка1) перед точкой контакта сжаты, а волокна ведомого (Рисунок 3, метка 2) – растянуты, а после прохождения точки контакта волокна обоих катков возвращаются к исходной длине что обусловлено угловой частотой радиальных линий.

Рисунок 3 – Упругое проскальзывание

4 Расчет фрикционных передач


Рассмотрим расчет фрикционных передач на примере передачи Рисунка 4 в виде двух цилиндрических катков, прижимаемых друг к другу. Принципиально, расчет фрикционной передачи состоит из двух частей: расчет геометрических и кинематических соотношений и силовой расчет, сводящийся обычно к определению силы прижатия и момента ведущего катка.

Рисунок 4 – Цилиндрические катки, вид сбоку

С точки зрения геометрических и кинематических соотношений – расчет достаточно простой. Учитывая тот факт, что линейные скорости обоих колес в точке контакта равны между собой, передаточное соотношение механизма выглядит так:

где,
- угловая скорость первого колеса (по часовой стрелке), а
- угловая скорость второго колеса (против часовой стрелки).

Переходя к силовому расчету, проскальзывания я передаче не будет, если окружная сила F не превышает силы трения в точке контакта

. Таким образом, условие работы фрикционного механизма выглядит так:

или

где,

- прижимная сила. Окружная сила F определяется через момент полезного сопротивления
и диаметр выходного ролика
, таким образом:

Однако, учитывая изменчивость условий эксплуатации, и в первую очередь, непостоянство момента полезного сопротивления

, на ведомом валу и непостоянству коэффициента трения f, которые могут привести к проскальзыванию и даже буксованию катков, в это выражение вводят опытный поправочный коэффициент
, называемый запасом сцепления. Для силовых передач
принимают значения равные от 1,25 до 1,5, а для кинематических – до 3. С учетом этого, уравнение, обеспечивающее условие сцепления в передаче, принимает вид:

Таким образом, для определения прижимной силы по заданному моменту полезной нагрузки, следует исходить из соотношения: