Смекни!
smekni.com

Применение подъемно-транспортных машин для комплексной механизации производства (стр. 14 из 38)

Грузы притягиваются и удерживаются за счет электромагнитного или вакуумного воздействия. Работают захваты автоматически.

Подъемные электромагниты являются удобными и экономичными и применяются для перегрузки грузов из стали и чугуна любой формы (слитков, плит, балок, металлоконструкций). Преимущества электромагнитов: автоматизация захвата и разгрузки, дистанционное управление, возможность работы с грузами различной формы и высокой температуры, высокая производительность кранов. Подъемными электромагнитами чаще оборудуют мостовые и, реже, стреловые краны.

Подъемная сила электромагнитов находится в пределах от нескольких сотен Н до 0,3МН.

Выпускают их круглой (рис. 6.10, а) и прямоугольной (рис. 6.10, б) формы мощностью 0,4...18,5кВт. Наиболее распространены круглые электромагниты; прямоугольные применяют, в основном, для транспортирования длинномерных грузов (труб, балок, рельсов и др.), для чего используют траверсы с несколькими электромагнитами.

Электромагниты работают на постоянном токе, подводимом при помощи кабеля от преобразователя, установленного на кране.

Рисунок 6.10– Подъѐмные электромагниты

Корпус электромагнита 3 изготовлен из малоуглеродистой стали, обладающей высокой магнитной проницаемостью. Катушка 2 выполнена секционной в герметичной оболочке 5, расположена внутри корпуса и залита под давлением теплостойкой массой. Снизу она защищена немагнитными шайбами 6 с высокой механической прочностью и износостойкостью (высокомарганцовистая сталь) и удерживается снизу полюсами 1.

Подъемная сила электромагнита зависит от характера и свойств поднимаемого металла, температуры его нагрева. Если принять грузоподъемность массивных грузов (плит, слитков) за 100%, то при подъеме рельсов, балок подъемная сила электромагнитов уменьшается до 50%, при подъеме скрапа до 2...7%, а при подъеме стружки всего 1,5...2,5%. Подъемная сила снижается с повышением температуры материала (максимальная температура может доходить до 500°С, после чего теряются магнитные свойства), а также с увеличением в металле содержания марганца и никеля.

К недостаткам подъемных электромагнитов относится большая собственная масса и опасность отрыва груза. Места работы кранов с подъемными электромагнитами должны быть ограждены.

Для повышения безопасности эксплуатации подъемные электромагниты снабжают дополнительными механическими устройствами, удерживающими груз от падения при исчезновении тока. Применяются также буферные аккумуляторные батареи с системой блокировки, которая подает электроэнергию от аккумуляторов при исчезновении напряжения в сети, а в последнее время предложены подъемные электромагниты в сочетании с постоянными магнитами, исключающие падение груза.

В а к у у м н ы е з а х в а т ы основаны на том, что в камере создается разрежение воздуха (вакуум) и под действием атмосферного давления возникает сила притяжения между грузом и захватом

Преимущества: удобство и быстрота захвата, наличие жесткой связи захвата с грузом, что позволяет легко изменить положение груза в пространстве; сохранность поверхности, что особенно важно для шлифованных и полированных поверхностей. Они применяются для подъема длинномерных и тонкостенных грузов: листовых цветных металлов, листового стекла, фанеры, деревянных, пластмассовых и бетонных плит и др. Масса вакуумных захватов по отношению к массе поднимаемого груза составляет 8...10% (у траверсных захватов больше).

Применение вакуумных захватов способствует автоматизации и повышению производительности крана.

В зависимости от способа создания вакуума в камере различают: насосные (рис. 6.11, а), эжекторные (рис. 6.11, б) и безнасосные (рис. 6.11, в) захваты.

Наибольшее распространение получили захваты с вакуумными насосами, которые могут располагаться на одной раме с захватными камерами или на кране. Эжекторные захваты применяют в основном в стационарных установках для подъема небольших грузов с гладкой поверхностью.

Рисунок 6.11– Вакуумные захваты

Достоинства безнасосных вакуумных захватов: простота конструкции и независимость от источника энергии. Недостаток – время удержания груза ограничено временем сохранения рабочего вакуума.

Для перегрузочных работ с различными грузами применяют вакуумные грузозахватные устройства с жестким креплением вакуумных захватов

(рис. 6.11, г) и подвешенных на траверсе (рис. 6.11, д).

На фермах 1 мостового крана (рис. 6.11, г) попарно смонтировано восемь пневмоцилиндров 2 с вакуумными захватами 4; на мосту крана размещены вакуум-насос 3, ресивер и вакуумный групповой коллектор для управления захватами. Грузоподъемность погрузчика 4 т.

На рис. 6.11, д показан подвесной вакуумный захват для крупноразмерных деталей (панелей, блоков и др.). Захват состоит из рамы 1, несущей вакуумные тарелки 2, число и расположение которых меняется в зависимости от конфигурации груза. Электродвигатель 3 приводит в движение вакуум-насос 4.

Вакуумные грузозахваты успешно используют для комплексной механизации монтажа крупноразмерных стеклянных панелей и витрин. Устройство смонтировано на самоходной машине и позволяет с помощью специального механизма точно перемещать и устанавливать стекла.

Стреловые гусеничные краны, оборудованные вакуумным захватом, могут поднимать железобетонные плиты массой до 20 т.

Подъемная сила вакуумного захвата

Q kA p1 p2 ,

где k0,8...0,85 – коэффициент, учитывающий изменение атмосферного давления и свойств уплотнителя; А – площадь вакуумной камеры, м2; p1 – атмосферное давление, Па; р2 – остаточное давление в камере, Па.

Предельная сила притяжения Q 7 104А. Принято считать, что на 1Н силы тяжести груза требуется (1,2...1,3) 10-5м2 активной площади вакуумного захвата.

Вакуумные насосы должны иметь небольшие габаритные размеры и массу, большое быстродействие и надежно работать при высоких и низких температурах окружающей среды. Давление в системе находится в пределах 1...15кПа (7,5...112 мм рт. ст.).

К о н т е й н е р ы с а в т о м а т и ч е с к и м з а х в а т о м . Контейнеры

(рис. 6.12, а) – унифицированные перевозные устройства, приспособленные для механизированной передачи с одного вида транспорта на другой. Контейнеры служат для перевозки и временного хранения штучных, сыпучих и наливных грузов. Они разделяются на универсальные и специальные. За последнее время контейнерные перевозки получили самое широкое распространение.

Контейнеризация является одним из важнейших направлений совершенствования транспортных процессов, механизации и автоматизации трудоемких погрузочно-разгрузочных и складских работ. Это мощный рычаг повышения эффективности погрузочно-разгрузочных работ, произво-дительности труда, экономичности транспортировки, сокращения эксплуатационных затрат производства. Экономия составляет 20–30% по сравнению с обычной перевозкой штучных грузов. Средняя стоимость погрузки на судно 1т контейнеризированного груза в десятки раз ниже, чем обычного тарно-штучного груза.

Контейнеры изготавливают из стали, алюминия, стеклопластика, пластмассы, дерева, легких алюминиево-магниевых сплавов, нержавеющих сталей, резиновотканевых материалов.

В зависимости от свойств транспортируемых грузов контейнеры классифицируют на девять типов: для перевозки порошкообразных или зернистых грузов, требующих защиты от атмосферных осадков; сыпучих с повышенной влажностью; штучных; наливных грузов различной вязкости; листового стекла; скоропортящихся грузов и др.

Рисунок 6.12– Контейнерные устройства

По конструктивному исполнению контейнеры разделяют на: непакетируемые, которые в порожнем состоянии транспортируются без изменения объема; пакетируемые, которые в порожнем состоянии входят один в другой без изменения корпуса; складные.

По форме корпуса контейнеры разделяют на цилиндрические, формы параллелепипеда, конусообразные, пирамидальные, а по способу выгрузки на: опрокидные; с боковой разгрузкой; с донной разгрузкой; с пневморазгрузкой.

Основными параметрами контейнеров являются габаритные размеры и масса брутто. Объем и масса контейнеров чрезвычайно разнообразны и изменяются соответственно от 9 до 60 м3 и 5,4 до 30 т. Отношение массы груза к полезному объему контейнера составляет 0,4...0,6.

Контейнеры из алюминиевых сплавов и стеклопластов имеют высокую прочность, малую собственную массу и максимальный полезный объем. Несмотря на большую стоимость, алюминиевые контейнеры довольно экономичны в эксплуатации.

Для насыпных грузов (цемент, мука, зерно, соль, сода и др.) применяют специальные контейнеры, которые подразделяются на жесткие и мягкие, разгружаемые самотеком и принудительно (сжатым воздухом).

Для подъема контейнеров применяется несколько конструкций автоматических захватов. На рис. 6.12, б приведена простая конструкция захвата, смонтированного на раме 1 и подвешенного на канатных блоках 9. По углам контейнера прикреплены верхние 4, 8 и нижние 5 угловые фитинги. Захват наводится на контейнер с помощью направляющих фиксаторов 2, 7, прижимающихся к стенкам 6, затем замки 3 входят в угловые фитинги и поворачиваются в рабочее положение.

На рис. 6.12, в показаны положения замков в момент входа в угловые фитинги и в повернутых положениях для подъема контейнера.