Смекни!
smekni.com

Солнце (стр. 5 из 6)

Результаты экспериментов по регистрации солнечных нейтрино приводят к значениям меньше ожидаемых в несколько раз. Особенно велико различие в 4 раза для хлорного детектора, для которого имеются наиболее длительные ряды наблюдений. Основная трудность интерпретации этих расхождений связана с тем, что между данными различных экспериментов нет внутреннего согласия. Последние два десятилетия велась упорная работа, как по совершенствованию методики самого эксперимента, так и по уточнению стандартных теоретических моделей внутреннего строения Солнца. Несмотря на эти усилия, расхождения остаются почти на прежнем уровне. Это наводит на мысль о том, что истинная причина расхождений связана с недостаточностью наших знаний о самой физической природе нейтрино. Одна из гипотез (возможно, подтверждаемая некоторыми опытами) предполагает наличие у нейтрино способности самопроизвольно переходить в нейтрино других видов, в то время как все эксперименты регистрируют лишь электронные нейтрино, возникающие при бета распадах.

Солнечные затмения

Полное солнечное затмение – интереснейшее явление природы, знакомое человеку с глубокой древности. Оно бывает сравнительно часто, но видно не из всех местностей земной поверхности и поэтому многим кажется редким. Солнечные затмения происходят в новолуния, когда Луна, обращаясь вокруг Земли, оказывается между Землей и Солнцем и полностью или частично заслоняет его. Луна расположена ближе к Земле, чем Солнце, почти в 400 раз, и в то же время ее диаметр меньше диаметра Солнца также приблизительно в 400 раз. Поэтому видимые размеры Луны и Солнца почти одинаковы, и Луна может закрыть собой Солнце. Если во время солнечного затмения Луна находится в наибольшем удалении от Земли, то лунный диск будет немного меньше солнечного, и лунная тень не доходит до Земли. Вокруг темной Луны видно яркое кольцо незакрытой поверхности Солнца, т.е. произойдет кольцеобразное солнечное затмение, которое может продолжаться до 12 минут. Полное и кольцеобразное солнечные затмения начинаются с частных фаз. Во время кратковременной полной фазы мы получаем возможность увидеть солнечную корону во всей ее красе и обстоятельно ее исследовать. Для выполнения этих исследований астрономы совершают экспедиции в полосу полного затмения, туда, где тень Луны пробежит по земной поверхности. Частные солнечные затмения происходят чаще полных, но они гораздо менее информативны; их также стараются не пропустить усердные наблюдатели небесных явлений, выполняя более ограниченную программу. Солнечное затмение начинается с первого контакта, когда диск Луны касается диска Солнца. Прикосновение происходит на правом краю солнечного диска. Момент первого контакта очень трудно уловить; следует заранее знать, в каком месте солнечного диска должно произойти касание. Соответствующий позиционный угол точки касания сообщается в астрономических календарях. Второй контакт – начало полной фазы затмения, третий – ее конец, а четвертый – это окончание частных фаз, когда лунный диск сходит с солнечного. При частном затмении второго и третьего контакта быть не может. После первого контакта диск Луны все больше закрывает диск Солнца, и фаза затмения нарастает. В момент наибольшей фазы частного затмения солнечный серп быстро поворачивается. Если до этого момента он был повернут рожками вправо, то после него он обращен рожками влево. Уловив момент поворота солнечного серпа, можно определить то время, когда произошла максимальная фаза затмения. Чаще всего за год бывает 2-3 солнечных затмения, причем одно из них, как правило, полное или кольцеобразное. Наблюдения за солнечным затмением полезны для уточнения теории движения Луны.

Солнце и жизнь на Земле. Проблема: “ Солнце – Земля ”

Солнечное излучение, падающее на Землю, в общем-то очень стабильно, иначе жизнь на Земле подвергалась бы слишком большим температурным перепадам. В настоящее время спутники очень тщательно измерили энергию, излучаемую Солнцем, и показали, что солнечная постоянная не постоянна, а подвержена вариациям в пределах десятых долей процента, причем долгопериодические вариации связаны с солнечным циклом (рис. 8) (Солнечная постоянная - количество солнечной энергии, приходящей на поверхность площадью 1 кв.м, развернутую перпендикулярно солнечным лучам в космосе) От максимума к минимуму солнечная постоянная уменьшается примерно на 0.1%, т.е. во время максимума активности (много пятен на Солнце) оно излучает как бы больше. Такие изменения также могут иметь влияние на земной климат. В Маундеровский минимум (1645-1715) было очень мало пятен. Этот период известен на Земле как малый ледниковый период: в это время было намного холоднее, чем сейчас. В принципе это может быть простым совпадением, но скорее всего, эти события имеют причинную связь.

Глубина проникновения солнечной радиации в атмосферу Земли зависит от длины волны его излучения. К счастью для жизни, оксид азота в тонком слое атмосферы на высоте выше 50 км над поверхностью Земли блокирует очень переменное коротковолновое ультрафиолетовое излучение Солнца. На меньших высотах озон и молекулярный кислород поглощают длинноволновую часть ультрафиолетового излучения, которое также вредно для жизни. Изменения солнечного ультрафиолетового излучения влияют на структуру озонового слоя.

На Землю оказывает воздействие также так называемый солнечный ветер, обусловленный спокойным испусканием коронарной плазмы. Солнечный ветер очень сильно влияет на хвосты комет и даже имеет измеряемые эффекты влияния на траекторию спутников. Заряженные частицы из солнечного ветра ответственны за северные и южные полярные сияния, когда они пронизывают земную атмосферу на высокой скорости и заставляют ее светиться. На рис. 9 изображено северное сияние на Земле (авроральный овал), как оно видно из космоса, снимок сделан с корабля "Space Shuttle". На рис. 10 то же самое явление свечения северного и южного аврорального овала можно наблюдать на Сатурне.

Испускание Солнцем заряженных частиц, которое зависит в основном от условий в слоях, расположенных выше фотосферы, также меняется в цикле солнечной активности. Наибольшее значение среди этих частиц с точки зрения влияния на земные процессы имеют высокоэнергичные протоны, которые выбрасываются при взрывах в солнечной короне (одновременно выбрасываются также высокоэнергичные электроны).

Приходящие к Земле высокоэнергичные солнечные протоны имеют энергии от 10 млн. до 10 млрд. эВ (для сравнения энергия фотона видимого света составляет около 2 эВ). Наиболее энергичные протоны движутся со скоростью, близкой к скорости света, и достигают Земли приблизительно через 8 мин после самых мощных солнечных вспышек. Такие вспышки связаны с колоссальными извержениями в активных областях Солнца, которые резко увеличивают свою яркость в рентгеновском и крайнем ультрафиолетовом диапазонах. Считается, что источником энергии вспышек является быстрое взаимоуничтожение (аннигиляция) сильных магнитных полей, при которой происходит разогрев плазмы и возникают мощные электрические поля, ускоряющие заряженные частицы. Эти частицы способны оказать разнообразное влияние на людей находящихся в этот момент не под защитой земного магнитного поля.

Мощные протонные вспышки являются важным фактором для планирования полетов на гражданских авиалиниях, особенно проходящих в полярных широтах, где силовые линии земного магнитного поля направлены перпендикулярно поверхности Земли и поэтому позволяют заряженным частицам достигать нижних слоев атмосферы (см. рис. 9 и 10 с авроральными овалами на Земле и Сатурне).

Пассажиры в этом случае подвергаются повышенному радиационному облучению. Еще более сильное воздействие такие явления могут оказывать на экипажи космических аппаратов, особенно тех, которые летают на орбитах, проходящих через полюсы. Наблюдалось также влияние протонных вспышек на функционирование вычислительных систем. Так, в августе 1989 года одно такое событие парализовало работу вычислительного центра фондовой биржи в Торонто. В течение солнечного цикла происходит лишь несколько десятков таких мощных вспышек, и их частота значительно выше в его максимуме, чем в минимуме..

Изменения потока плазмы солнечного ветра, обтекающего Землю, приводят к воздействию совсем иного вида. Эта относительно низко энергичная плазма как бы убегает из солнечной короны, преодолевая из-за высокой температуры гравитационное притяжение Солнца. Магнитное поле Земли воздействует на заряженные частицы солнечного ветра и не позволяет им приблизиться к поверхности планеты. Пространство вокруг Земли, в которое в основном не могут проникать частицы солнечного ветра, называют земной магнитосферой. Вспышки и другие резкие изменения магнитных полей на Солнце приводят к возмущениям в солнечном ветре и изменяют давление плазмы на земную магнитосферу. Связанные с воздействием солнечного ветра изменения геомагнитного поля составляют лишь около 0,1% его напряженности, равной приблизительно 1 Гс. Однако индуцируемые даже столь малыми изменениями геомагнитного поля электрические токи в длинных проводниках на поверхности Земли (таких как высоковольтные линии или трубы нефтепроводов) могут приводить к драматическим последствиям. Например, 13 марта1989 г. сильная магнитная буря, вызванная вспышками, связанными с одним из крупнейших, когда либо наблюдавшихся пятен на Солнце, вывела из строя систему электроснабжения всей провинции Квебек.