Смекни!
smekni.com

Восьмиосная цистерна для перевозки нефтепродуктов (стр. 2 из 2)

Рис6

УСТРОЙСТВО АВТОТОРМОЗОВ

Тормозное оборудование грузовых вагонов обеспечивает накопление и пропуск

сжатого воздуха, подаваемого от локомотива, а также восприятие, реализацию и

передачу (трансляцию) сигналов управления процессами торможения и отпуска,

поступающих по тормозной магистрали (ТМ).

Тормозное оборудование состоит из магистрального воздухопровода, сообщенного через тройник и разобщительный кран подводящей трубой диаметром , или соединительным рукавом с двухкамерным резервуаром. Последний связан трубами диаметром с запасным резервуаром, установленным на одной из тележек вагона и сообщенным с тормозным цилиндром. На двухкамерный резервуар устанавливаются главная и магистральная части.Накопленный опыт по проектированию восьмиосных цистерн для перспективных условий эксплуатации позволил сформулировать следующие технические требования для тормозной системы восьмиосных вагонов:

1) тормозная система должна удовлетворять действующим нормативам МПС;

2) механическая часть тормозной системы может иметь несколько отдельных рычажных передач, кинетически не связанных между собой, а КПД отдельной рычажной передачи должен быть не менее 0,9;

3) рычажная передача тормоза должна размещаться на различных типах магистральных вагонов, то есть быть унифицированной;

4) структура рычажной передачи механизма тормоза должна соответствовать требуемой подвижности звеньев и исключать избыточные связи и излишнюю многозвенность;

5) отвод тормозных колодок от колеса в отпущенном состоянии тормоза должен быть полным, а при наличии специального механизма отвода колодок, последний не должен ухудшать кинематику и изменять силовые характеристики рычажной передачи;

6) между элементами рычажной передачи и осями колесных пар должен быть обеспечен гарантированный зазор, исключающий их взаимодействие.

МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ДЕФОРМАЦИЙ И НАПРЯЖЕНИЯ. ЗАКОН ГУКА.

В целях определения напряжений в деталях вагона используется несколько

методов, но чаще всего – тензометрический метод, состоящий в замере малых деформаций в отдельных точках изделия и последующем переходе от них к напряжениям с использованием закона Гука: Напряжение, возникающее вметалле, прямопропорционально деформации (в пределах упругой деформации металла, т.е до пластической деформации)

σ=Еε

[σ]- напряжение в металле

[Е]- модуль упругости данного металла

[ε]- деформация

Тензометрический метод: для замера относительного удлинения на поверхности телса намечают отрезок, куда наклеивается тензодатчик, который деформируется вместе с металлом при приложении какой-либо нагрузки.

Метод лаковых покрытий: перед испытанием изучаемая поверхность детали покрывается слоем специального хрупкого лака (например канифольно елулоидного). Лак наносится плоской кистью или погружением детали в сосуд с лаком. После просушки деталь подвергается испытанию. Основным результатом является картина трещин в лаковом покрытии, деформирующемся вместе с деталью. Важна также последовательность их появления с ростом нагрузки. Применяют 2 метода получения трещин: при нагружении детали и при разгрузке.

Метод поляризационно – оптический: основан на том, что некоторые прозрачныематериалы при деформации становятся анизотропными, в деформационном состоянии они приобретают свойство лучепреломления. Такие материалы называют оптически-активными. Модель помещают в оптическую установку, где она просвечивается пучком света. При нагружении модели на экране появляется ее изображение, покрытое системой полос, анализ которых дает возможность изучить распределение напряжений в модели.