Смекни!
smekni.com

Устройство пневмоподвески автомобиля (стр. 2 из 3)

· Сохранение полного хода сжатия и отбоя упругого элемента при любых нагрузках.

· Сохранение полного дорожного просвета при любых нагрузках.

· При загрузке не изменяются углы установки колес.

· Не увеличивается Cx (коэффициент аэродинамического сопротивления), нет ухудшения внешнего вида.

· Меньший износ шаровых опор благодаря небольшим углам наклона пальцев.


· При необходимости возможна более высокая нагрузка.

Неизменное (расчётное) положение кузова автомобиля (подрессоренной массы) поддерживается путём регулировки давления в пневмобаллонах.

Статический ход сжатия благодаря регулированию давления всегда остаётся одинаковым и его не требуется принимать в расчёт при конструировании колесных ниш.

Sстат=0

Другой особенностью пневматической подвески с функцией регулирования дорожного просвета является то, что частота собственных колебаний кузова остаётся почти постоянной при изменении массы автомобиля.

Помимо принципиальных достоинств системы регулирования дорожного просвета, её внедрение на пневматической подвеске обеспечивает важнейшее преимущество.

Благодаря тому, что давление воздуха в пневматических упругих элементах регулируется в зависимости от нагрузки, достигается изменение жёсткости пропорционально величине подрессоренной массы. В результате этого частота собственных колебаний кузова и, вследствие этого, комфорт в движении остаются почти неизменными вне зависимости от нагрузки.


Следующим преимуществом является обусловленная принципом действия прогрессивная характеристика пневматического упругого элемента.

При помощи полностью несущей пневматической подвески обеих осей (Audiallroadquattro) можно регулировать величину дорожного просвета автомобиля:

обычное положение для движения в городе;

пониженное положение для езды на высокой скорости для улучшения динамики и уменьшения силы сопротивления воздуха;

повышенное положение для движения по пересеченной местности и по плохим дорогам.

«Полностью несущая» означает:

Системы регулирования дорожного просвета часто представляют собой комбинацию стальных или газонаполненных упругих элементов с гидравлическим или пневматическим устройством регулирования. Величина усилия, воспринимаемого такой подвеской, слагается из суммы усилий, воспринимаемых работающими упругими элементами. Поэтому такую подвеску называют «частично несущей» (Audi 100/AudiA8).

Подвески с регулированием дорожного просвета (на задней оси) и Audiallroadquattro (на задней и передней осях) имеют несущие пневматические упругие элементы и поэтому называются «полностью несущие».

Конструкция пневматического упругого элемента

На легковых автомобилях в качестве упругих элементов используются пневмобаллоны рукавного типа.

При малых габаритах такая конструкция обеспечивает большую деформацию упругого элемента.

Пневматический упругий элемент состоит из:

· Верхней крышки корпуса

· Резинокордного рукавного элемента

· Поршня (нижней крышки корпуса)

· Зажимного кольца

Наружный и внутренний слои изготавливаются из высококачественного эластомера. Материал устойчив к любым атмосферным воздействиям и является маслостойким. Внутренний слой воздухонепроницаемый.

Каркас воспринимает усилия, возникающие благодаря внутреннему давлению в пневмобаллоне.



Высококачественный эластомер и корд из полиамидной нити позволяют рукавному элементу легко раскатываться и обеспечивают минимальное трение (чувствительность) в этом упругом элементе.

Требуемые характеристики обеспечиваются в диапазоне температур от -35°C до +90°C.

Крепление манжеты (рукавного элемента) между верхней крышкой корпуса и поршнем осуществляется металлическими зажимными кольцами. Зажимные кольца запрессовываются в условиях производства.

Рукавный элемент раскатывается по поршню.

В зависимости от принятой кинематической схемы подвески оси пневмобаллоны могут устанавливаться отдельно от амортизаторов или вместе с ними (пневматическая амортизаторная стойка).

Пневмобаллоны не должны сжиматься или разжиматься, когда в них нет давления, так как при этом манжета не может правильно раскатываться по поршню (возможны её повреждения).

На автомобиле с пневмобаллонами, в которых отсутствует давление, перед тем, как приподнимать или опускать его (например, при помощи подъёмника или домкратов), в пневмобаллонах с использованием диагностического тестера необходимо создать давление.

Амортизатор с пневматическим регулированием демпфирования

Для того, чтобы поддерживать постоянной степень демпфирования и, тем самым, ходовые качества при изменении нагрузки от частичной до полной, в пневматической подвеске с регулированием дорожного просвета, а также в 4-уровневой пневматической подвеске автомобиля на задней оси устанавливаются амортизаторы с бесступенчатой, изменяющейся в зависимости от нагрузки характеристикой.

Благодаря пневматической подвеске, наряду с сохранением постоянной частоты собственных колебаний кузова, удаётся также достигать почти не зависящей от нагрузки характеристики колебаний кузова автомобиля.

Этими конструктивными мероприятиями достигается хороший комфорт при движении с частичной нагрузкой, одновременно при полной нагрузке колебания кузова достаточно эффективно гасятся.

В этом случае речь идёт о так называемом амортизаторе PDC (PneumaticDampingControl = пневматическое регулирование демпфирования). Усилие демпфирования может варьироваться в зависимости от давления в пневмобаллоне.

Изменение усилия демпфирования осуществляется при помощи отдельного клапана PDC, встраиваемого в амортизатор. Он соединен шлангом с пневматическим упругим элементом.

Пропорциональное нагрузке давление в пневматическом упругом элементе изменяет гидравлическое сопротивление клапана PDC, т. е. усилие демпфирования при отбое и сжатии.

Чтобы сгладить скачки давления в пневматическом упругом элементе (при сжатии и отбое), во входной воздушный канал клапана PDC встроен дроссель.


Устройство и принцип действия

Клапан PDC изменяет гидравлическое сопротивление между рабочими камерами 1 и 2. Рабочая камера 1 с помощью отверстий соединена с клапаном PDC. При низком давлении в пневматическом упругом элементе (условия нагрузки — снаряженный или имеющий небольшую частичную нагрузку автомобиль) клапан PDC имеет малое гидравлическое сопротивление, благодаря чему часть масла направляется в обход соответствующего демпфирующего клапана. Тем самым уменьшается усилие демпфирования.

Гидравлическое сопротивление клапана PDC находится в определённой зависимости от управляющего давления (давления в пневматическом упругом элементе). Усилие демпфирования зависит от гидравлического сопротивления соответствующего клапана демпфирования (сжатия/отбоя), а также клапана PDC.


Работа при ходе отбоя и высоком давлении в пневматическом упругом элементе

Управляющее давление, а, следовательно, и гидравлическое сопротивление клапана PDC высоки. Большая часть масла (в зависимости от величины управляющего давления) должна дросселироваться через поршневой клапан, усилие демпфирования повышается.

Работа при ходе отбоя и низком давлении в пневматическом упругом элементе

Поршень идет вверх, часть масла дросселируется через поршневой клапанный узел, другая часть перетекает через отверстия в рабочей зоне 1 к клапану PDC. Поскольку управляющее давление (давление в пневматическом упругом элементе) и, следовательно, гидравлическое сопротивление клапана PDC малы, то усилие демпфирования уменьшается.

Работа при ходе сжатия и низком давлении в пневматическом упругом элементе

Поршень уходит вниз, рассеивание энергии обеспечивается донным клапанным узлом и, в некоторой степени, гидравлическим сопротивлением движению поршня. Часть вытесняемого штоком поршня масла дросселируется через донный клапанный узел в компенсационную камеру. Другая часть перетекает туда через отверстия в рабочей камере 1 к клапану PDC. Поскольку управляющее давление (давление в пневматическом упругом элементе) и, следовательно, гидравлическое сопротивление клапана PDC малы, то усилие демпфирования уменьшается.

Работа при ходе сжатия и высоком давлении в пневматическом упругом элементе

Управляющее давление и, следовательно, гидравлическое сопротивление клапана PDC высоки. Большая часть масла (в зависимости от величины управляющего давления) должна пройти через донный клапанный узел, усилие демпфирования повышается


Заключение

Достоинства пневмоподвески

· пневмоподвеска имеет большую энергоемкость в основном рабочем диапазоне и при больших прогибах, обеспечивая снижение амплитуды колебаний, уменьшение количества энергии, поглощаемой амортизаторами, упрощают регулировку. При этом в подвесках со стальными упругими элементами прогрессивная характеристика достигается только за счет сильного усложнения конструкции;