Смекни!
smekni.com

Тепловой расчет двигателя внутреннего сгорания (стр. 5 из 10)

Значение среднего эффективного давления:

(80)

Средняя скорость поршня:

(81)

Среднее давление механических потерь:

(82)

Среднее индикаторное давление:

(83)

Индикаторный крутящий момент:

(84)

Удельный эффективный расход топлива:

Часовой расход топлива:

(86)

Коэффициент избытка воздуха: принимаем при nmin=700 об/мин,

=0,86, во всех остальных расчетных точках
=
=0,96.

Коэффициент наполнения:

(87)

Произведя расчёты параметров для различных расчётных режимов работы (n, об/мин), результаты сводим в таблицу 4.

Таблица 4

nx показатели
Nex Mex pex Vпср pмx pix Mix gex Gтx αx ηvx
об/мин кВт Н∙м МПа м/с МПа МПа Н∙м г/кВтч кг/ч - -
700 18,8 256,6 1,193 2,01 0,057 1,25 268,7 242 4,55 0,86 0,85
1350 38,7 273,88 1,274 3,87 0,078 1,352 290,6 218 8,44 0,96 0,91
2000 57,3 273,72 1,273 5,73 0,099 1,372 294,9 209 11,97 0,96 0,88
2650 71,0 255,97 1,191 7,6 0,12 1,311 281,8 215 15,26 0,96 0,84
3310 76,5 220,81 1,027 9,49 0,141 1,168 251,1 236 18,05 0,96 0,8
3975 69,7 167,52 0,779 11,4 0,163 0,942 202,5 272 18,96 0,96 0,7

По расчетным данным, приведенным в табл. 4, строим внешнюю скоростную характеристику проектируемого двигателя.

Коэффициент приспособляемости:

, (88)

где Memax определен по скоростной характеристике.


4. Кинематика и динамика двигателя

4.1 Кинематический расчёт КШМ

4.1.1 Выбор отношения радиуса кривошипа к длине шатуна и длины шатуна

В целях уменьшения высоты двигателя без значительного увеличения инерционных и нормальных сил величина отношения радиуса кривошипа к длине шатуна предварительно была принята в тепловом расчете

.

Определяем длину шатуна:

, мм , (89)

где R = 43 - радиус кривошипа, мм.

Lш = 43 / 0,269 = 160,0 мм.

4.1.2 Перемещение поршня

Построив кинематическую схему кривошипно-шатунного механизма, устанавливаем, что ранее принятые значения

и
обеспечивает движение шатуна без задевания за нижнюю кромку цилиндра. Следовательно, перерасчета величин
и
делать не требуется.

Масштабы:

Ms = 1 мм в мм;

Мφ = 3ْв мм через каждые 30ْ;

При j = 0 Vп = ±Vмах, а на кривой Sх – это точки перегиба.

, мм , (90)

где j- угол поворота коленчатого вала, град.

Расчет

производим аналитически через каждые
угла поворота коленчатого вала. Значения для
при различных
взяты из ([1] табл. 19 ) и занесены в расчетную табл. 5., вместе с вычисленным перемещением.

Определяем угловую скорость вращения коленчатого вала:

, рад/с ;(91)

w=p×3310/30=346 рад/с.

4.1.3Скорость поршня

Мv = 0,5 м/с в мм.

При перемещении поршня скорость его движения является величиной переменной и при постоянном числе оборотов зависит только от изменения угла поворота кривошипа и отношения

.

Скорость поршня найдем по формуле:

, м/с ;(92)

Значения для

взяты из ( [1], табл. 20) и занесены в табл.5. вместе с вычисленной скоростью.
4.1.4 Ускорение поршня

, м/с2 . (93)

Значения для

взяты из ( [1], табл. 21) и занесены в табл.5. вместе с вычисленным ускорением.

Таблица 5.- Вычисленые параметры кинематического расчета.

0 0,0000 0,000 0,0000 0,0 1,2690 6532
30 0,1676 7,2 0,6165 9,2 1,0005 5150
60 0,6009 25,8 0,9825 14,6 0,3655 1881
90 1,1009 47,3 1,0000 14,9 -0,2690 -1385
120 1,6009 68,8 0,7495 11,2 -0,6345 -3266
150 1,8996 81,7 0,3835 5,7 -0,7315 -3766
180 2,0000 86 0,0000 0,0 -0,7310 -3763
210 1,8996 81,7 -0,3835 -5,7 -0,7315 -3766
240 1,6009 68,8 -0,7495 11,2 -0,6345 -3266
270 1,1009 47,3 -1,0000 -14,9 -0,2690 -1385
300 0,6009 25,8 -0,9825 -14,6 0,3655 1881
330 0,1676 7,2 -0,6165 -9,2 1,0005 5150
360 0,0000 0,000 0,0000 0,0 1,2690 6532

4.2. Динамический расчет двигателя

4.2.1 Силы давления газов

Индикаторную диаграмму полученную в тепловом расчете, развертываем по углу поворота кривошипа по методу Брикса.

Определяем поправку Брикса:

Δ=R×l/(2×MS),мм , (94)

где MS- масштаб хода поршня на индикаторной диаграмме, мм в мм.

Δ=46×0,269/2×1=5,78мм.


Определяем масштабы развернутой диаграммы: соответственно давлений и удельных сил, полных сил, угла поворота кривошипа:

Mр =0,05 МПа в мм ;

Mр=МР×Fп, Н в мм ;

Mр=0,05× 0,00785×106=392,5 Н в мм;

Мj=3° в мм;

Мj¢=4×p/OB, рад в мм ;

Мj¢=4×p/240=0,0523 рад в мм.

По развернутой диаграмме определяем значения избыточного давления над поршнем Dрг=pг - p0 и заносим в графу 2, табл.6. динамического расчёта, в таблице даны значения углов поворота коленчатого вала φ через каждые 300 , а так же при φ=3750.

По Δрг определяем значения Рг и заносим в графу 3, табл.6.

(95)

4.2.2 Приведение масс частей КШМ

По табл. 22 [1] с учетом диаметра цилиндра, отношения S/D, рядного расположения цилиндров производим расчеты:

Определяем массу поршневой группы:

mп= m¢п×Fп, кг ;(96)

Для поршня из алюминиевого сплава принято m¢п=150 кг/м2

mп =150×0,00785=1,18 кг.


Определяем массу шатуна:

mш= m¢ш×Fп, кг ;(97)

Для стального кованного шатуна принимаем m¢ш=200 кг/м2

mш =200×0,00785= 1,57 кг.

Определяем массу неуравновешенных частей одного колена без противовесов:

mк = m¢к×Fп, кг ;(98)

Для литого чугунного вала принято m¢к=200 кг/м2.

mк =200×0,00785=1,57 кг.

Определяем массу шатуна, сосредоточенную на оси поршневого пальца:

mш.п=0,275×mш, кг ;(99)

mш.п =0,275×1,57 = 0,432 кг.

Определяем массу шатуна, сосредоточенную на оси кривошипа:

mш.к= 0,725×mш, кг ;(100)

mш.к =0,725×1,57 = 1,138 кг.


Определяем массы, совершающие возвратно-поступательное движение:

mj= mп+ mш.п, кг ;(101)

mj= 1,18+0,432=1,612 кг.

Определяем массы, совершающие вращательное движение: