Мир Знаний

Чрезвычайные ситуации космического характера (стр. 5 из 6)

Результаты расчетов, проведенных в ВЦ РАН, показывают, что падение даже небольших, от 200м в диаметре, тел (диаметр Тунгусского метеорита оценивается в ~50м) приводит к серьезной запыленности атмосферы, после чего в течение нескольких дней происходит резкое падение температуры воздуха до минусовых значений, даже в летнее время. Кроме того, резко увеличивается количество осадков. Вымывание пыли из атмосферы длится ~1 месяц. С увеличением размера падающих тел эти возмущения атмосферы, будут пропорционально возрастать. Положение может еще более усугубиться, из-за дополнительной запыленности высотных слоев атмосферы, в результате сброса там пылевой оболочки ядра кометы.

Таким образом, можно констатировать, что падение космических тел на Землю, запускает механизм, который по суммарной энергетике воздействия на атмосферу и гидросферу на много порядков превысит кинетическую энергию упавшего тела. Пыль воздушными течениями разнесется по атмосфере и станет экранировать поступления солнечной радиации к земной поверхности. В тоже время она не мешает инфракрасному излучению беспрепятственно уходить в космическое пространство с этой поверхности, что в свою очередь приведет к выхолаживанию тропосферы. Так как воды мирового океана еще не остыли, интенсифицируются процессы тепломассобмена между холодной сушей и еще теплым океаном, что вызовет резкое увеличение количества осадков, бурь, смерчей и тайфунов.

Приведенные выше рассуждения преследуют вполне определенную цель – показать, что падения, даже небольших кометных ядер в любую точку земного шара, не оставляющих даже кратеров на Земле, приводит к резкому, кратковременному изменению климата и катастрофическим наводнениям в некоторых районах земного шара.

В тоже время, в большинстве оценок ущерба от столкновений учитывается причиненный ущерб только непосредственно в месте падения космического тела, а это уводит нас от действительности. Такая оценка действует успокаивающе, так как площади с высокой плотностью населения составляют незначительную часть земной поверхности.

Как же защититься от этих вполне реальных напастей. Для начала необходимо как минимум знать, какие тела нам угрожают, какими свойствами они обладают, откуда приходит угроза. Предложенная концепция позволяет дать научно обоснованные ответы на эти вопросы. И хотя она, разработанная, кстати, на основе классической теории извержения комет, идет вразрез с общепринятыми взглядами на эти проблемы, но так как эти проблемы пока еще не решены, концепция имеет право на существование.

Дмитриев Е.В., ныне ветеран КБ “Салют” ГКНПЦ им. М.В. Хруничева, проводит исследования ключевых проблем космогонии. По вопросу о защите Земли от космогенных катастроф предложил стратегическую концепцию по защите Земли от опасных эруптивных комет и считает их основными виновниками космических катастроф Земли. В соавторстве провел исследования ключевых проблем защиты Земли от опасных космических объектов (ОКО), разработал тактику ближнего перехвата ОКО, предложил сублимационный способ увода опасных комет, предложил порядок действий по Гражданской защите в случае надвигающейся космической опасности и т.п.

Есть все основания попробовать варианты решения означенных задач, руководствуясь следующими положениями.

1) Основными виновниками космогенных катастроф Земли являются исключительно кометы. Астероиды, пересекающие земную орбиту, являются ни чем иным, как “погасшими” или “выгоревшими” кометными ядрами, маскирующимися под астероиды. Астероиды Главного пояса имеют очень устойчивые орбиты, о чем говорит древний возраст метеоритов ~4,5 млрд. лет, а падающие на Землю метеориты, как уже давно доказано, являются осколками астероидов.

2) Кометы образуются внутри Солнечной системы, путем извержения (выброса) материи из систем планет-гигантов, они имеют небольшой срок жизни и малый возраст. Вопросы, с каких конкретно небесных тел происходит выброс комет, и каков механизм выброса, остаются пока открытыми.

3) Кометы состоят из материнских пород тектитов и субтектитов и представляют собой сцементированный смерзшимися газами и водным льдом конгломерат осадочных и изверженных пород с включениями никелистого железа. Они обладают высокой пористостью и имеют малую прочность.

Стратегия защиты Земли от таких комет в следующем: в качестве первоочередной задачи нужно установить в системах планет-гигантов дозорные зонды, способные фиксировать начало выброса кометных ядер, что позволит заведомо знать минимальное располагаемое время на отражение опасных комет. Начинать нужно с системы Юпитера, которая, судя по внушительному семейству ее короткопериодических комет, обладает наибольшей эруптивной активностью. Самое простое, что можно предложить на первом этапе создания системы защиты Земли, это дооборудовать уже существующие стартовые комплексы, с которых запускаются межпланетные космические аппараты. В связи с отсутствием жесткого ограничения на время, необходимое для подготовки к пуску ракеты-носителя с перехватчиком комет, даже в случае первого сближения с Землей только что родившейся кометы, достаточно будет иметь в составе этих стартовых комплексов несколько комплектов перехватчиков и периодически обновляемых ракетоносителей. Количество комплектов уточняется в процессе разработки проекта. В дальнейшем следует создать специализированный противокометный ракетно-космический комплекс (ПК РКК)[8].

Каким же образом заставить обнаруженную опасную комету свернуть с рокового пути? Для этого случая уже имеется способ, предложенный совместно ЦНИИМАШ на международной конференции по защите Земли, состоявшейся в г. Снежинске, 1994 г. Согласно законам небесной механики любое воздействие на комету должно изменить параметры ее орбиты. Задача состоит в том, чтобы это воздействие не разрушило ее ядро и в тоже время быть достаточным для обеспечения гарантированного пролета мимо Земли. Наиболее вероятно, что атаку на комету придется осуществлять на пересекающихся орбитах, на высоких относительных скоростях, достигающих нескольких десятков км/c. Поэтому наиболее легко реализуемый является надповерхностный ядерный взрыв. Рекомендуемая мощность боеприпаса 10-20 Мт. К сожалению, какой-либо разумной альтернативы ядерному заряду, пока не просматривается. В результате такого взрыва, с поверхности кометного ядра сносится ее корка и ядро получает небольшой импульс. Далее, под действием солнечной радиации должен резко усилиться сублимационный реактивный эффект, который создаст небольшую, но постоянно действующую тягу и комета начнет сходить с опасной орбиты.

Конечно, одного такого воздействия на комету будет явно недостаточно. Основная задача – не дать образовываться поверхностной корке, препятствующей процессу сублимации. Поэтому предполагается последовательные пуски нескольких перехватчиков. В зависимости от массы кометы их число может достигать нескольких десятков. Для повышения эффективности каждый перехватчик является навигатором для идущего следом. Такая тактика отражения комет обеспечит последовательные мягкие воздействия на ядро, периодическое обнажение внутренних пород, что в свою очередь позволит получить максимальную отдачу от сублимационного реактивного эффекта. Такая же тактика должна быть применена и для околоземных объектов, являющихся, согласно предложенной концепции, ни чем иным, как неактивными кометными ядрами, которые по своим оптическим характеристикам практически не отличаются от астероидов.

Развитие высоких технологий позволило астрономам открыть половину из наиболее опасных космических тел километрового диапазона, блуждающих в космосе. Космическая техника позволит нам противостоять не очень крупным объектам (порядка 50 - 500 метров) с помощью ядерных устройств. Речь идет не о военных зарядах, а о специальных устройствах, которые позволят разбить и рассыпать в пыль опасные метеориты. Мы надеемся, что более крупные опасные тела астрономы смогут открыть заранее, и у нас будет достаточно времени, чтобы изучить их поведение и попытаться изменить траекторию, чтобы отвлечь катастрофу от Земли.

Согласно, концепции системы планетарной защиты "Цитадель". “В первую очередь, опасный объект надо обнаружить. Для этого необходимо организовать единую глобальную систему контроля космического пространства и ряд региональных центров перехвата опасных объектов, например, в России и Америке, в странах с необходимым арсеналом защиты. После обнаружения опасного тела заработают все службы наблюдения на Земле, а информация будет обрабатываться в специально созданном центре планетарной защиты, где ученые вычислят место падения, объем предварительного разрушения и выработают рекомендации для правительства. После этой работы взлетят космические аппараты, сначала для разведки и определения параметров траектории, размеров, формы и прочих характеристик угрожающего объекта. Затем полетит аппарат-перехватчик с ядерным зарядом, который разрушит тело или изменит его траекторию. Создание системы оперативного перехвата позволит заранее обнаружить более крупные объекты и сосредоточить усилия региональных служб на борьбе с угрозой. Мы можем защититься, но наши возможности не безграничны, и от очень больших объектов, к сожалению, мы спрятаться не сможем, даже если соберем все имеющиеся на планете ядерные заряды. Поэтому, не такой утопичной кажется мысль о создании “Ноева ковчега” на Луне, чтобы спасти человечество…”[9].

Проблема астероидной опасности стала осознаваться с 80-х гг. при открытии астероидов, пролетающих мимо Земли и после расчетов последствий «ядерной» зимы.

Изучение орбит малых тел Солнечной системы (комет и астероидов), падение на Юпитер кометы Шумейкера-Леви в 1994 г. свидетельствуют о том, что вероятность столкновения Земли с подобного рода объектами значительно выше, чем это предполагалось ранее. По последним оценкам вероятность столкновения с 50-метровым объектом составляет 1 раз в столетие. Опасное сближение Земли с астероидом Таутатис имело место в декабре 1992 г., когда астероид вошел, по некоторым оценкам, в сферу гравитационного поля Земли. Глобальную катастрофу, грозящую гибелью цивилизации, способна вызвать только космогенная катастрофа — столкновение с крупным астероидом или кометой, так как здесь нет ограничения по энергии.