Смекни!
smekni.com

Становление физической картины мира от Галилея до Эйнштейна (стр. 1 из 6)

Курганский Государственный Университет (экономический факультет)

Реферат

Тема: Становление физической картины мира от Галилея до Эйнштейна

проблема элементарного.

Курган 2001

План.

Введение…………………………………………………………….3-4

I. Метод Галилея……………………………………………………4-5

1.Анализ исторической обстановки и проблемной ситуации в науке. Новые концепции Галилея……………………………..4-5

2.Заслуга Галилея………………………………………………5

II.Классическая механика…………………………………………5-7

III.Максвелл: развитие и кризис механической картины мира...7-13 1.Молекулярно – кинетическая концепция…………………...7-10

2.Теориия электромагнитного поля и кризис механической картины мира …………………………………10-11

3.Эйнштейн и рождение релятивистской физической картины мира……………………………………………………………..11-13

Заключение………………………………………………………….13

Введение…………………………………………………………….14

V.Проблема Элементарного…………………………………….14-21

1.Какой объект можно назвать «самым элементарным»…..15-17

2. Систематика элементарных частиц. Суперэлементарные частицы…………………………………17-20

Заключение………………………………………………………..20-21

Список литературы………………………………………………….22

Введение.

Научную картину мира следует понимать как широкую панораму современных знаний о природе, включающую в себя наиболее важные факты, гипотезы, теории. Функциональное значение такого рода суммарного знания видится в обеспечении синтеза знания, связи различных разделов естествознания. При этом есть расхождения понимания того, для чего необходим синтез:

- Одни считают, что он нужен в плане методологическом, обеспечивая интеграцию научного знания.

- Другие – что он нужен скорее в плане психологическом, помогая преодолевать узкую специализацию современных исследований.

Это различие в понимании функций картины мира в свою очередь ведет к расхождению в самом подходе к её анализу:

- В первом случае для понимания смысла и роли картины мира в научном познании необходимо рассматривать методологию современной науки, структуру научного знания;

- Во втором – исследовать специальную обусловленность научного познания, социально – психологические и социокультурные факторы деятельности учёных.

В противовес точке зрения авторов, выдвигающих на первый план идею синтеза, объединения разнообразных естественнонаучных знаний, ряд исследователей считает, что научная картина мира необходима при построении каждой отдельной теории как составная часть её фундамента. (В.С. Степин)

В.С. Степин считает, что научная (например, физическая) картина является необходимым компонентом каждой отдельной теории. Будучи по происхождению результатом синтеза научных знаний, частнонаучные картины мира дают, по его мнению, видение основных систематических характеристик предмета исследования соответствующей науки. «Такое видение. Изменяясь по мере исторического развития научных знаний, выражается по средствам представлений:

1. Об элементарных объектах, из которых предполагаются построены все другие объекты, исследуемые в соответствующей науке

2. О типологии исследуемых объектов

3. О характеристике взаимодействия объектов (об особенности причинности и закономерности)

4. О пространстве – временных характеристик изучаемой реальности».

Учитывая указанные разногласия, В.А. Амбарцумян и В.В. Каротинский предполагают различные трактовки физической реальности в широком и узком смысле этого слова.

Физическая картина мира в узком смысле этого слова – это система фундаментальных конструктов, характеризующих основные свойства физической реальности (пространства, время, вещество, поле, вакуум) связи между которыми представлены физическими принципами.

Физическая картина мира в широком смысле этого слова – это наиболее общие конкретно-исторические представления о физическом мире, который с точки зрения стиля научного мышления конкретной эпохи рассматривается как наиболее важные и существенные.

II.Метод Галилея.

С именем Галилея связано начало принципиально важного этапа развития физического знания – восхождение на уровень познания.

- Анализ исторической обстановки и проблемной ситуации в науке. Новые концепции Галилея.

Принятые в научном сообществе того времени методологические принципы требовали, чтобы теоретические суждения непосредственно подтверждались чувственным данным.

Исторически сложившаяся проблемная ситуация не позволяла Галилею принять порцию эмпиризма[1], согласно которой все научные утверждения возникают только в результате обобщения непосредственно наблюдаемых фактов. Он стремился выработать и защитить существенно иное отношение исследователей к эмпирическим данным.

Требования логической (и математической) самосогласованности, системной целостности всех утверждений физической науки опирается у Галилея на важную мировоззренческую идею о целостности Вселенной, единообразии «способа действия самой природы».

Целостность, совершенство, самосогласованность научного знания (которой не смогли добиться ни Аристотель, ни тем более его средневековые последователи) основываются на гармонии мироздания.

В методологическом плане это означает, что наука должна находить исходные, базисные формы этого порядка, обладающие к тому же высшей универсальностью и потому позволяющие на их основе объяснить всё происходящие в мире. Так, в физике Нового времени входила идея, что общий принцип построения целостной, объясняющей все явления научной теории должен исходить из общей физической картины мира.

По Галилею, закономерности мира отражаются именно в количественных отношениях между наблюдаемыми явлениями, а не в той внешней видимости отдельно взятых фактов, которые носит видимости обычно обманчивый характер. Математика, отражающая универсальные формы природных законов, выступает для Галилея важнейшим средством проверки взаимной согласованности фактических данных и теоретических построений.

Согласно Галилею, логические конструкции из идеализированных объектов можно рассматривать как научно достоверные при следующих условия:

- Вся система выдерживает проверку на внутреннюю логическую согласованность, целостность;

- Идеализации и теоретические модели, отражая общие законы данной области явлений, позволяют с единых позиций (единообразным способом) объяснять всю совокупность фактов, в том числе и кажущихся эффектов, предсказать ещё не наблюдавшиеся события;

- Идеализация и теоретические модели отнюдь не являются вспомогательными или фиктивными умственными построениями, они отражают общий план мироздания, общие законы данной области явлений, картину мира.

- Заслуга Галилея.

Он не только обратился к научным эксперимента, не только ввёл метод предельных идеализаций, не только использовал математику, но прежде всего предвосхитил принципы методом построения физических теорий. Эта методология включает в себя использование экспериментов (как реальных, так и мысленных), создание фундаментальных идеализаций, построение с их помощью конструктивных теоретических моделей реальности с применением математического аппарата и самое главное, без чего теряет смысл применение всех указанных методологических средств, - «разработку и конструктивное использование общих представлений о принципах строения мироздания, научной картины мира на теоретическом уровне».

III. Классическая Механика.

В истории механики за работами Галилея (который также имел предшественников в накоплении эмпирических фактов и обобщений и в разработке теоретических предпосылок механики) последователи многочисленные работы целой плеяды выдающихся учёных. Их коллективными усилиями шаг за шагом не только строилось всё здание классической механики, но и совершенствовался её концептуальный фундамент, система исходных теоретических идеализаций. Создание фундамента идеализаций явилось своеобразной, характерной для теоретического уровня познания формой логического анализа материальной действительности. Продуктами анализа стали идеализации элементарного объекта, элементарного процесса, пространственно – временных отношений, формы детерминизма[2], отразившие конкретное содержание картины мира.

Хотя чувственные восприятия небесных тел, движения которых оказалось в центре внимания Галилея и Ньютона, с самого начала подсказывали образ точечного объекта, теоретическая идеализация материальной точки родилась не сразу. И Галилей, и Ньютон широко использовали понятие тела как движущегося объекта. Лишь позже, когда выяснилось, что поле тяготения сферически симметрического тела выглядит в точности так, как если бы вся масса этого тела была сосредоточена в его геометрическом центре, в одной точке, идея теоретического замещения материальных тел идеализированными образами материальных точек могла рассматриваться как логически согласованная со всем содержанием теории.

Идеализация материальной точки широко использовалась Л. Эйлером в его программе построения механики. В основе этой программы, которую Л. Эйлеру во многом удалось реализовать, лежало принципиальное убеждение, что сложные случаи механического движения могут быть теоретически представлены конструктивными моделями, построенными из образов взаимодействия и перемещающихся материальных точек. Логически исходным пунктом системы механики, по Л. Эйлеру, выступают изложенные в его трактате 1736 года теория движения свободной материальной точки и динамика точки при наличии связей.

Кроме идеализации основного элементарного объекта в логической структуре теории принципиальное значение имеет идеализация основного элементарного процесса (в данном случае – формы движения). Галилей вплотную приблизился к выработке такой идеализации в представлениях о равномерном движении (по окружности), которое, раз начавшись, продолжается бесконечно, если этому не препятствует внешние действия.