Смекни!
smekni.com

Выживаемость танков и танкистов (стр. 2 из 3)

Бронебойные снаряды проникают в броню за счет своей кинетической энергии. При этом, если этой энергии достаточно, как правило, происходит выбивание пробки брони, диаметр которой приблизительно равен калибру снаряда. Заброневое поражающее действие каморного бронебойного снаряда зависит от его остаточной кинетической энергии и от фугасного действия его разрывного заряда, а у бескаморного фугасное действие, естественно, отсутствует. Понятно, что каморный снаряд имеет гораздо лучшее заброневое действие, чем бескаморный, но его кинетическая энергия (и, соответственно, бронепробиваемость) немного меньше за счет меньшего собственного веса – ведь удельная плотность разрывного заряда меньше удельной плотности металла, из которого делают корпус снаряда.

Существуют и другие факторы, увеличивающие и усугубляющие действие самих снарядов. В результате проникновения снаряда внутрь танка там часто образуются так называемые вторичные осколки. Это осколки самой конструкции танка, его механизмов и деталей, образовавшиеся в результате их разрушения, а также незакрепленные предметы, вовлекаемые в движение вследствие воздействия на них кинетической энергии снаряда и выбитой им пробки брони, а также фугасного действия разрывного заряда каморного бронебойного снаряда.

Вторичные осколки умножают и усиливают повреждения танка, а также существенно увеличивают вероятность поражения его экипажа, поэтому необходимо постараться свести их число к минимуму. В идеале результатом пробития брони должно быть появление только одной вышеупомянутой пробки брони, которой к тому же не следует раскалываться на части. Но на практике к ней нередко добавляются обломки, отколовшиеся от примыкающей к пробоине брони. Чтобы не допустить их образования, броню, особенно ее тыльную часть, стараются сделать как можно более вязкой без ущерба для ее снарядной стойкости. Другой мерой уменьшения тяжести последствий пробития брони является избавление от незакрепленных предметов внутри танка и повышение прочности элементов его конструкции и его механизмов и деталей, которые при разрушении легко превращаются в смертоносные вторичные осколки. Это особенно важно для боевого отделения и отделения управления танка, где размещаются танкисты.

Необходимо добавить, что попавшие в танк и даже не пробившие его броню снаряды иногда все же причиняют ущерб его экипажу и его механизмам. Главной причиной этого тоже является недостаточная вязкость тыльной поверхности брони танка, которая в результате огромных напряжений, вызванных ударом снаряда, даже не сумевшего ее пробить, приводит к отколу от нее обломков, способных нанести раны и травмы танкистам и повреждения танку. Это было присуще броне Т‑34, особенно его литым башням, в первой половине войны. Закаленная на сравнительно высокую твердость на всю свою глубину, броня этих башен была склонна к образованию вторичных осколков.

В результате процесса пробивания брони и происходящего при этом перехода кинетической энергии снаряда в тепловую проникшие внутрь танка снаряд и пробка брони (или их обломки, если они раскололись) раскаляются до очень высоких температур и приобретают зажигательное действие. В случае каморного снаряда к ним добавляются высокотемпературные газы, образующиеся при взрыве его заряда. В танке хватает вещей, способных к возгоранию. Прежде всего, это горюче-смазочные материалы, пороховые заряды боеприпасов, резиновые изделия, краска, ветошь и одежда танкистов. Следствием пожара в танке являются взрывы его боекомплекта и баков с топливом. Но и без них сгоревший танк полностью выходит из строя и уже не подлежит восстановлению, потому что в результате длительного воздействия высокой температуры при сильном пожаре танковая броня теряет свою твердость и, соответственно, защитные качества. Кроме того, часто из-за неравномерного нагрева у горящего танка происходят необратимые деформации корпуса и башни, которые практически невозможно исправить. Ремонтировать такой танк нет никакого смысла – ведь гораздо дешевле и быстрее построить новый.

В немецких танках были предприняты адекватные конструктивные меры для предупреждения пожаров. Прежде всего, это изоляция топливных баков от боевого отделения. Баки Pz.III располагались в моторном отсеке, который был отгорожен от боевого отделения броневой переборкой. На Pz.IV они находились на самом днище машины под полом боевого отделения и были дополнительно защищены сверху листами брони толщиной 11 мм. К тому же эта часть танка в бою обычно прикрыта складками местности, и попадания в нее снарядов маловероятны.

А вот в «тридцатьчетверке» топливные баки стояли прямо в боевом отделении, причем там их было целых четыре, что значительно повышало вероятность попадания хотя бы в один из них. Решение разместить баки в столь неудачном месте было принято в результате серьезной недооценки конструкторами танка пожароопасности дизельного топлива, которая и в самом деле существенно ниже, чем у бензина.

Давайте вкратце рассмотрим физику этого явления. Важнейшими характеристиками пожароопасности любого горючего является их температуры вспышки и воспламенения. Температурой вспышки называется наименьшая температура горючего, при которой его пары образуют с кислородом, содержащимся в окружающем его воздухе, смесь, вспыхивающую при поднесении к ней источника зажигания – хотя устойчивого горения при этом еще не возникает из-за недостаточной скорости образования паров. В среднем температура вспышки разных сортов бензина находится в пределах от – 30 до – 45°С, а дизельных топлив – от +30 до +80°С. Температура воспламенения – это наименьшая температура горючего, при которой оно выделяет пары с такой скоростью, что после их воспламенения от внешнего источника зажигания вещество продолжает устойчиво гореть. Температура воспламенения бензина всего на 1 –5°С выше его температуры вспышки, а у дизельного топлива (солярки) разница между ними достигает 30 – 35°С.

Резюмируя эти данные, приходим к заключению, что бензин легко воспламеняется при температуре, превышающей – 25°С. У солярки благоприятные условия для воспламенения создаются при гораздо более высоких температурах – по меньшей мере +60°С, а для некоторых ее сортов – выше +115°С.

Эти цифры красноречиво объясняют, почему при поднесении горящего факела к ведру с бензином он моментально вспыхивает, а при быстром погружении такого же факела в ведро с соляркой огонь гаснет. Происходит это потому, что факел просто не успевает разогреть солярку до температуры воспламенения и гаснет в ее глубине из-за отсутствия кислорода, необходимого ему для горения.

Но при попадании снаряда или вторичных осколков в топливный бак создаются совсем другие условия. Тут надо рассмотреть несколько возможных сценариев:

1. При попадании болванки, осколков снаряда или брони в полный бак происходит его пробитие и разливание топлива. Топливо при этом чаще всего не загорается, потому что температуры и энергии болванки или осколков недостаточно для его воспламенения. В этом случае бак служит дополнительной защитой от осколков, которые во многих случаях не могут даже пробить его насквозь.

2. При попадании каморного снаряда в полный бак и его подрыва внутри происходит полное разрушение бака и расплескивание содержащегося в нем топлива – в большинстве случаев с последующим вго загоранием.

3. При попадании болванки, осколков снаряда или брони в бак, заполненный топливом лишь частично, происходит его пробитие. Если бак пробит выше уровня топлива, то болванка и осколки, как правило, проходят навылет и не вызывают пожара. Если ниже, то вероятность возникновения пожара зависит от соотношения количества топлива, оставшегося в баке, и величины тепловой энергии, которую передают ему осколки. Небольшое количество топлива в этих условиях может загореться.

4. Наиболее катастрофические последствия вызывает взрыв каморного снаряда в баке, заполненном на четверть или менее. При этом образуется аэрозольная смесь мелких капель топлива с возду-хом, которая добавляется к уже имеющимся в баке парам топлива. Условиями для возникновения детонации такого смертоносного коктейля являются высокая температура и скачкообразно увеличивающееся до огромной величины давление, созданные фугасным действием разрывного заряда каморного снаряда. Чтобы запустить механизм детонации, этот заряд должен быть эквивалентным мощности не менее 50–100 г тротила, что в то время соответствовало камор-ному бронебойному снаряду калибром 75 мм и более. Емкость топливного бака для создания оптимальных для детонации условий смесеобразования должна составлять не менее 100 л. В баках объемом до 50 л заметного усиления фугасного действия снаряда не наблюдалось.

Зато в случае ее возникновения детонация топливного бака повышала фугасный эффект взорвавшегося в нем снаряда в 2–4 раза. Таким образом, взрыв бака Т‑34, вызванный попаданием в него 76‑мм бронебойного снаряда, содержащего 150 г тротила, соответствовал мощности взрыва 152‑мм бронебойного снаряда с зарядом в 400 г тротила. В результате детонации бака ближайший к месту ее возникновения броневой лист полностью вырывало из корпуса по сварному шву и отбрасывало в сторону, а башня танка, которую обычно срывает с него в случае взрыва боекомплекта, при этом оставалась на месте. Даже снаряды в танке, несмотря на детонацию, произошедшую рядом с ними, часто полностью сохранялись в своих укладках. Пожар практически никогда не начинался, больше того, ранее начавшийся пожар потухал. Это легко объяснимо – его гасила созданная взрывом мощная ударная волна. Сам бак с соляркой после детонации внутри него исчезал без следа, он просто разлетался в пыль. Интересно отметить, что взрыв аналогичного бака с бензином был примерно в 1,5 раза слабее и не вызывал разрушения сварных швов корпуса танка.

Как видно из описания механизма детонации топливного бака и ее последствий, все это полностью соответствовало процессу, который происходит при подрыве современного боеприпаса объемного взрыва, называемого иногда «вакуумной бомбой». Как известно, скорость ее детонации доходит до 1500–1800 м/с, а давление – до 15–20 атмосфер. Массовая скорость газового потока, направленного в сторону движения волны, достигает при этом 600–800 м/с. Именно эта чудовищная сила и разрывала даже прочные силовые сварные швы корпуса Т‑34.