Мир Знаний

Эволюция звезд (стр. 4 из 4)

4. Особенности эволюции тесных двойных систем

Двойные, как и более сложные звездные системы (кратные звезды), формируются благодаря сохранению момента количества движения.Поэтому в каждом конкретном случае возраст звезд, которые образовывают эту систему, должен быть одинаковым. А если это так, то любые отличия между компонентами (размеры, поверхностные температуры и т.п.) были бы обусловленные разностью в значениях их масс.

Но наблюдаемые звездные системы очень часто резко противоречат этой теоретической схеме. Особенно это касается тесных двойных систем. Например, в подавляющем большинстве хорошо изученных тесных двойных систем один из компонентов есть субгигантом, тогда как второй – нормальной звездой главной последовательности. При этом оказывается, что массы субгигантов, как правило, меньше масс звезд главной последовательности – компонентов той же системы. А это противоречит приведенной выше теории эволюции одинарных звезд, ведь в зону красных гигантов быстрее должна передвигаться та звезда, которая имеет большую массу.

Эту проблему решили, когда выяснили, что субгиганты – компоненты тесных двойных систем заполняют свою полость Роша (3, ст. 367). В тесных двойных системах поверхность Роша ограничивает возможные размеры компонентов звездной системы. Поэтому можно утверждать, что начальные массы красных субгигантов были большими. Однако в процессе эволюции такой звезды после выгорания основной части водорода в ее недрах ядро сжималось, и разбухала оболочка. Во время такого расширения вещество оболочки пересекало поверхность Роша и покидало звезду, переходя к звезде-спутнику и оседая на его поверхности. В этом заключается так называемая гипотеза «изменения ролей»: вследствие обмена массой главным компонентом системы становится звезда, начальная масса которой сначала была меньшей и которая поэтому еще остается в своей эволюции на главной последовательности. Значительный излишек светимости субгиганта (приблизительно на 3т), который противоречит его малой массе, объясняется повышенным содержанием гелия во внешних слоях звезды, благодаря чему эти слои более прозрачны. А это оказывает влияние на излучение энергии, которая освобождается в недрах звезды.

Расчеты подтверждают высокую эффективность процесса «изменения ролей». Оказывается, что такое «изменение ролей» в каждой двойной системе может происходить несколько раз. Потеряв часть массы, первая звезда со временем, сжавшись, за своими размерами может стать меньше своей полости Роша, тогда как вторая, расширившись, заполнит свою полость, и процесс обмена массой повторится, но уже в обратном направлении. За вычислениями, такой обмен массой длится всего несколько десятков или сотен тысяч лет.

Приведем пример таких вычислений. Рассмотрим эволюцию тесной двойной системы с массами m1=5m☼ и m2=4m☼ при расстоянии между компонентами равном а=13,8R☼. Сначала эволюция первой звезды проходит так же, как и одинарной, и на диаграмме спектр-светимость она смещается из главной последовательности немного вверх. В скором времени звезда заполняет свою полость Роша и вещество начинает переплывать ко второму компоненту, причем за всего 420 000 лет масса первой звезды уменьшится до 0,94m☼. На диаграмме спектр-светимость звезда опускается вниз почти параллельно к главной последовательности, причем ее светимость уменьшается почти в десять раз. После этого первая звезда двигается вверх к начальной светимости и быстро передвигается влево в зону белых карликов. Второй компонент увеличивает свою массу вдвое и передвигается вверх вдоль главной последовательности.

С обменом массой в тесных двойных системах связан феномен вспышки новой звезды. Анализ показал, что вспышка возникает в том случае, если компонентом, который увеличивает свою массу, есть белый карлик. Падая на поверхность звезды белого карлика, вещество (главным образом водород) накапливается, сжимается и нагревается. И если масса вещества, захваченного звездой, будет составлять приблизительно 10-3m☼, то температура и плотность в поверхностном слое белого карлика возрастут настолько, что в нем станут возможными термоядерные реакции азотного цикла. При этом выделение тепла вверх здесь недостаточно быстрое. Как следствие, в водородной оболочке белого карлика развивается тепловая неустойчивость, наступает взрыв и накопленную при акреции оболочку срывает ударная волна.

Таким образом, можно объяснить как наблюдаемую мощность вспышек новых звезд, так и наличие повторных новых.

Эффективность механизма обмена массой, очевидно, существенным образом уменьшается с ростом массы компонентов в том понимании, что тогда значительная часть массы попадает в межзвездное пространство, так что система ее вообще теряет. В качестве примера можно показать, что в ряде случаев компонентами тесных двойных (спектрально-двойных) систем есть звезды Вольфа-Райе – объекты, массы которых достигают 10m☼. Здесь скорости разлета газовой оболочки составляют 1000... 1500 км/с при темпе потери массы 10-5…10-4 m☼ за год. Важную роль при этом, очевидно, играет высокая светимость упомянутых звезд и световое давление в их внешних слоях. Особенности эволюции звезд Вольфа-Райє окончательно еще не выяснены. На сегодня установлено, что в их атмосферах больше гелия, чем водорода, и что они в основном принадлежат к плоской составляющей Галактики и являются молодыми звездами.

Заключение

В работе мы рассмотрели вопросы эволюции звезд, генерации и распространения энергии в оболочках звезд. В работе рассмотрено пути эволюции звезд в зависимости от их массы и показано последние этапы эволюции разных систем. Также рассмотрено эволюцию тесных звездных систем, в которых возможен обмен массой и энергией.

Рассмотрено также пути генерации энергии в ядрах звезд в зависимости от их положения в главной последовательности и различные термоядерные циклы генерации.

Рассмотренные вопросы описывают развитие звезды во времени.

Список использованной литературы

1. Воронцов-Вельяминов Б. А. Очерки о вселенной. 8-е изд. М.: Наука, 1980, 248 с.

2. Гиндилис Л.М. 1990. Андрей Дмитриевич Сахаров и поиски внеземных цивилизаций // Земля и Вселенная. 1990. N 6. С. 63-67.

3. Ефремов И. Н. Из глубины Вселенной. 248 с. Ильяминов Б. А. Очерки о вселенной, массы, радиуса и т.п. с временем жизни самой звезды и характера звезд М.: Наука, 1984, 196 с.

4. Климишин И. А. Астрономия наших дней. 3-е изд. М.: Наука, 1986, 286 с.

5. Климишин И. А. Открытие Вселенной. 2-е изд. М.: Наука, 1992, 248 с.

6. Климишин А. В. Астрономия. М.: Наука, 1992., 237 с.

7. Шкловский И. С. Звезды: их рождение, жизнь и смерть. 3-е изд. М.: Высшая школа, 1984, 342 с.