Смекни!
smekni.com

Синергетика: различные взгляды (стр. 26 из 43)

Аксиоматический подход.

Сложность поведения даже простых моделей (термин "элементарных" применительно к этим моделям так же, как и в случае элементарных частиц, отражает скорее уровень наших знаний о них, чем их истинную сложность) навела исследователей на мысль обратиться к аксиоматическому методу с тем, чтобы, следуя Гильберту, отделить существенные особенности модели от несущественных, случайных и тем самым облегчить построение моделей, воспроизводящих нужный режим поведения.

С. Улам [27] и другие авторы рассмотрели отображения плоскости на себя, производимые по определенным правилам (аксиомам). Наиболее эффектным оказалось отображение, предложенное Копуэем [28, 29],- его знаменитая игра "Жизнь".

Играют на плоскости, разбитой на квадратные клетки одного и того же размера. Каждая клетка может находиться в одном из двух состояний: либо быть занятой (например, фишкой), либо пустой. Начальное состояние (начальная расстановка фишек) может быть выбрана произвольно. Последующие состояния клеток зависят от занятости соседних клеток на предыдущем ходу. Соседними считаются восемь клеток, непосредственно примыкающих к данной (имеющих с ней либо общую сторону - примыкание справа, слева, сверху и снизу, либо общую вершину - примыкание по диагонали). Игра состоит из дискретной последовательности ходов. На каждом ходу ко всем клеткам доски применяются следующие три правила (аксиомы).

I. Выживание. Клетка остается занятой на следующем ходу, если на предыдущем были заняты две, или три соседние с ней клетки.

2. Гибель. Клетка становится свободной на следующем ходу, если на предыдущем было занято более трех или менее двух соседних клеток (в первом случае клетка "погибает" из-за перенаселения, во втором - из- за чрезмерной изоляции).

3. Рождение. Свободная клетка становится занятой на следующем ходу, если на предыдущем были заняты три и только три соседние клетки.

Кажущаяся простота правил Конуэя обманчива: как и простые динамические системы, доска с расставленными на ней фишками может перейти в весьма сложные режимы, имитирующие процессы гибели (полное уничтожение всех расставленных в начальной позиции фишек), неограниченный рост, устойчивое стационарное состояние (система с определенной периодичностью в пространстве), периодические по времени осцилляции.

Подробный обзор современного состояния кибернетического моделирования биологии развития приведен в [301].

Поиски универсальной модели.

Сложность поведения простых моделей и неисчерпаемое разнообразие моделируемых объектов наводят на мысль о поиске некоего универсального класса моделей, которые могли бы воспроизводить требуемый тип поведения любой системы.

Рассмотрим, например, систему уравнений химической кинетики, описывающую редкую ситуацию: досконально известный механизм m-стадийной реакции (m - число элементарных актов), в которой принимает участие п веществ. Алгоритм выписывания динамической системы по схеме реакции однозначно определен [31]. В таких системах "химического типа" удалось установить существование довольно сложных режимов (например, каталитический триггер или каталитический осциллятор). В то же время известно, что далеко не всякую динамическую систему с полиномиальной правой частью можно интерпретировать как описывающую некую гипотетическую химическую реакцию: некоторые концентрации в случае произвольно заданной системы могут становиться отрицательными.

Возникает вопрос: всякую ли динамическую систему с полиномиальной правой частью можно промоделировать системой типа химической кинетики? Ответ (положительный) был получен М. Д. Корзухиным [18], доказавшим теорему об асимптотической воспроизводимости любого режима, осуществимого в системах с полиномиальной правой частью, системами типа химической кинетики (быть может, с большим числом "резервуарных" переменных, концентрации которых в ходе реакции считаются неизменными).

Вместо заключения. Мы умышленно не остановились в лекции ни на "универмаге моделей", ни на перечислении существующих методов решения уравнений и задач определенных типов, считая, что и то и другое слушатели сумеют почерпнуть из других лекций. Свою задачу мы видели в том, чтобы, не впадая в излишний педантизм, очертить контуры возникающего нового направления, обратить внимание на основные идеи и понятия.

Свою лекцию мы бы хотели закончить словами Л. И. Мандельштама: "В сложной области нелинейных колебаний еще в большей мере, чем это уже имеет место сейчас, выкристаллизуются свои специфические общие понятия, положения и методы, которые войдут в обиход физика, сделаются привычными и наглядными, позволят ему разбираться в сложной совокупности явлений и дадут мощное эвристическое оружие для новых исследований.

Физик, интересующийся современными проблемами колебаний, должен, по моему мнению, уже теперь участвовать в продвижении по этому пути. Он должен овладеть уже существующими математическими методами и приемами, лежащими в основе этих проблем, и научиться их применять" [32].


ЛИТЕРАТУРА

1. Манделъштам Л. И. Лекции по колебаниям. М.: Изд-во АН СССР, 1955. 503 с.

2. ХакенГ. Синергетика. М.: Мир, 1980. Wi с.

3. Synergetics. А Workshop / Ed. by И. Hakell. 3rd ел. В. etc,, 1977. 277р.

4. Synergetics far from equilibrium/Ed. by A. Pacault, С. Vidal. В. etc,, 1978.

5. structural stability in physics/ Ed. by W. Guttinger, H.Eikenmeier. В. etс., 1978.

6. Pattern formation by dynamic systems and pattern recognition / Ed. bv H. Haken B.etc. 1979. 305p.

7. Dynamic of synergetic systems/ Ed. by H. Haken. В. etc., 1980. 271 p.

8. Choaos and order in nature /Ed. by H.Haken. B. etc. 1980. 271 p.

9. Словарь no кибернетике. Киев: Гл. ред. Укр. сов. энцикл., 1979. 621 с.

10. Улам С. Нерешенные математические задачи. М.: Наука, 1964. 161с.

11. Nonlinear partial differential equations. N. Y.: Acad. press, 1967, p. 223.

12. Николае Г., Пригожин И. Самоорганизация в неравновесных системах. М.: Мир, 1979. 512 с.

13. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. М.: Мир, 1973. 280 с.

14. Гапонов-Грехов А. В., Рабинович М. И. Л. И. Мандельштам и современная теория нелинейных колебаний и волн.- УФН, 1979, 128, № 4, с. 579-624.

15. Васильев В.А., Романовской Ю. М., Яхт В. Г. Автоволновые процессы в распределенных кинетических системах.- УФН, 1979, 128, № 4, с. 625-666.

16. Академик Л. И. Мандельштам: К 100-летию со дня рождения.- М.: Наука, 1979, с. 107.

17. Бурбаки Н. Архитектура математики.- В кн.: Математическое просвещение. М.: Физ-матгиз, 1959, вып. 5, с. 106-107.

18. Жаботинский А. М. Концентрационные автоколебания. М.: Наука, 1974. 178 с.

19. Баренблатт Г. И. Подобие, автомодельность и промездуточная асимптотика. Л.: Гидрометеоиздат, 1978. 207 с.

20. Эбелинг В. Образование структур при необратимых процессах. М.: Мир, 1979, с. 13-14.

21. Романовский Ю. М., Степанова Н. В., Чернавский Ц. С. Математическое моделирование в биологии. М.: Наука, 1975. 343 с.

22. Turing А. М. The chemical basis of morphogenesis- Phil. Trans. Roy. Soc. London В, 1952, 237, p. 37-72.

23. Нейман Дж. фон. Теория самовоспроизводящихся автоматов. М.: Мир, 1971. 382 с.

24. Рабинович М. И. Стохастические автоколебания и турбулентность.- УФК, 1978, 125, №1, с. 123-168.

25. Mandelbrot В. В. Fractals. San Francisco: W. Н. Freeman and Co. , 1977. 365 p.

26. Хоффман У. Система аксиом математической биологии.- В кн.: Кибернетический сборник. М.: Мир, 1975, вып. 12, с. 184-207.

27. Математические проблемы в биологии: Сб. статей. М.: Мир, 1962, с. 258.

28. Гарднер М. Математические досуги. М.: Мир, 1972, с. 458.

29. Эйген М., Винклер Р. Игра жизнь. М.: Наука, 1979, с. 53.

30. Аладъев В. 3. Кибернетическое моделирование биологии развития.- В кн.: Параллельная обработка информации и параллельные алгоритмы. Таллин: Валгус, 1981, с.211-280.

31. Вольперт А. .0., Худяев С. И. Анализ в классе разрывных функций и уравнения математической физики. М.: Наука, 1975. 394 с.

32. Андронов А. А., Витт А. А., Хайкин С. Э. Теория колебаний: Предисловие к первому изданию. М.: Физматгиз, 1959, с. 11-12.


СИНЕРГЕТИКА И ПРОБЛЕМЫ УПРАВЛЕНИЯ В ТЕХНИКЕ,

ЭКОНОМИКЕ И СОЦИОЛОГИИ

Гуманитарная страница Анатолия Пинского

Научный коллектив кафедры систем автоматического управления ТРТУ под руководством профессора А.А.Колесникова проводит исследования в области синергетических систем управления. Развит принципиально новый подход к синтезу систем управления нелинейными многосвязными объектами, основанный на концепции введения притягивающих (инвариантных) многообразий-аттракторов.

На основе синергетического подхода осуществлен прорыв в трудной проблеме синтеза систем управления широким классом нелинейных многомерных объектов, что позволило впервые разработать общую теорию и методы аналитического конструирования систем скалярного, векторного, разрывного, селективно-инвариантного, многокритериального и терминального управлений нелинейными динамическими объектами различной физической природы, в том числе и с учетом ограничений на координаты и управления.

Теория и методы синтеза синергетических систем были использованы для решения крупных прикладных задач управления, в том числе:

- впервые в мировой энергетике решена известная своей сложностью проблема синтеза многосвязных систем согласованного управления электромеханическими процессами в турбогенераторах, которые принципиально превосходят существующие системы и обладают предельными свойствами;