Смекни!
smekni.com

Безопасность полетов (стр. 2 из 13)

4. Отправляясь в продолжительный ночной полет, начинай пользоваться кислородом с земли, если «кабинная высота» превышает 1500 м.

5. Не летай с похмелья. Высота плохо сказывается на организме в таком состоянии.

6. Перед высотным полетом не принимай таких лекарств, как сульфонамидные препараты, аспирин, антигистаминные средства, производные каменноугольного дегтя, средства против воздушной болезни и, конечно, алкоголь.

7. Принимай решение о пользовании кислородом на основании показания высотомера, а не своих чувств.

8. Регулярно проверяй исправность кислородного прибора [51].


3. РАЗМЕЩЕНИЕ ГРУЗОВ НА САМОЛЕТЕ

При размещении груза необходимо учитывать два фактора: полетный вес самолета и положение его центра тяжести. Конструкция некоторых самолетов легкого типа обеспечивает сохранение центровки самолета в допустимых пределах при любом размещении груза допустимого веса, однако большинство самолетов имеет свою строго определенную схему размещения грузов.

Неправильное размещение грузов вызывает: 1) снижение летных качеств самолета при перегрузке и 2) ухудшение управляемости самолета при смещении центра тяжести. Увеличение полетного веса приводит к увеличению инертности и понижению скороподъемности самолета, а также к увеличению критической скорости, наивыгоднейшей скорости для набора высоты, длины разбега при взлете и длины пробега при посадке. Если пренебречь увеличением наивыгоднейшей скорости для набора высоты, то характеристики набора высоты еще более ухудшатся; если же при этом не учитывать изменения других факторов, то результаты могут быть катастрофическими.

Управляемость большинства современных самолетов при смещении центра тяжести за допустимые пределы в сильной степени изменяется. В случае крайней передней центровки величина потребной силы, которую необходимо приложить для увеличения или уменьшения воздушной скорости, резко возрастает. При этом эффективность рулей при уменьшении скорости («задирание носа») на посадке резко снижается. В случае передней центровки, выходящей за допустимый предел, при посадке приходится пользоваться мотором. По мере перемещения центра тяжести назад продольная управляемость самолета улучшается, а величина усилий, необходимых для управления самолетом, уменьшается. В случае же выхода центра тяжести за крайнюю границу при полете на малых скоростях может появиться обратное действие рулей. Кроме того, при смещении центра тяжести назад выше допустимого предела, увеличивается минимальная скорость, при которой можно управлять самолетом в случае отказа мотора. Это происходит вследствие уменьшения корректирующего момента из-за сокращения расстояния между рулем поворота и центром тяжести.

Хотя указанное выше изменение характеристик самолета при смещении центра тяжести за допустимые пределы, по существу, не зависит от веса, тем не менее с увеличением веса управление или восстановление управления самолетом при таких центровках становится чрезвычайно трудным вследствие ненормальной управляемости и увеличения инерции самолета.

В авиации проблема сохранения центровки наиболее остро стоит в отношении одновинтовых вертолетов вследствие весьма малых допустимых отклонений от нормы и полного нарушения управляемости при выходе центра тяжести за крайние пределы. Сказанное также относится и к летающим лодкам.


4. ВЛИЯНИЕ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ ВОЗДУХА НА МОЩНОСТЬ ПОРШНЕВЫХ ДВИГАТЕЛЕЙ

В последние годы широко обсуждался вопрос о влиянии температуры и влажности воздуха на мощность двигателя и летные данные самолета. При сравнительно большом полетном весе, который допускается для транспортных самолетов в настоящее время, режим взлета часто оставляет желать лучшего, поэтому недопустимо или допустимо только самое незначительное снижение мощности двигателя в целях сохранения запаса мощности на случай отказа одного из моторов. Установлено, что при повышении температуры и влажности воздуха мощность двигателя падает, и это должно соответствующим образом учи-» тываться при расчете полетов, требующих большой взлетной мощности двигателей.

Чтобы подвести базу под наши рассуждения, попытаемся объяснить причины изменения мощности в зависимости от температуры и влажности воздуха и показать способы приблизительной оценки величины этого изменения.

Изменение мощности двигателя связано главным образом с количеством кислорода, поступающего в двигатель. Мощность поршневого двигателя создается в результате сгорания топлива в цилиндрах двигателя. Этот процесс может протекать только за счет кислорода воздуха. Горючее, обычно в виде паров жидкости, может при необходимости подаваться в цилиндры в количествах значительно больших, чем требуется для нормального сгорания. В то же время максимальное количество воздуха, которое может быть подано в цилиндры, резко ограничено. При прочих равных условиях мощность двигателя в основном зависит от веса кислорода, содержащегося в воздухе, поступающем в цилиндры. Температура и влажность влияют на параметры воздуха, что сказывается на мощности двигателя.

Рассмотрим сначала влияние на мощность двигателя температуры воздуха. Снижение мощности в данном случае вызывается главным образом уменьшением плотности воздуха вследствие повышения его температуры. Известно, что с увеличением температуры плотность, или вес определенного объема газа, уменьшается пропорционально его абсолютной температуре. Когда температура воздуха на 10° F (^5° С) выше температуры по стандартной атмосфере на уровне моря, равной 59° F (15° С), плотность воздуха уменьшается примерно на 2%; соответственно уменьшается и вес кислорода, содержащегося в единице объема воздуха. В то'же время более теплый воздух гораздо легче проходит через карбюратор, всасывающие патрубки, клапаны и пр., в результате чего величина снижения мощности двигателя, вызванного уменьшением плотности воздуха при его нагревании, уменьшается вдвое.

Теоретические выводы, подтвержденные на испытательном стенде, показывают, что для данной высоты, данного числа оборотов и давления наддува повышение температуры входящего воздуха на 10° F влечет за собой снижение мощности приблизительно на 1%. Следовательно, у самолета DC-3 (С-47) с моторами PWR-1830-92, расчетная мощность которых равна 1200 л. с. каждого, при взлете с аэродрома, расположенного на уровне моря, при температуре воздуха 90°F (32° С) мощность двигателей снизится на 3% (36 л. с. на каждый двигатель).

При работе двигателя с наддувом при полностью открытом дросселе отмечается дополнительное влияние изменения температуры на мощность двигателя. С повышением температуры воздуха давление, которое могло бы быть создано в цилиндрах с помощью нагнетателя, уменьшается. Таким образом, максимальный наддув, который достигается при полностью открытом дросселе в жаркий день, будет ниже, чем наддув, получаемый при тех же условиях в обычный средний день. Общая же потеря мощности двигателя будет складываться из потери за счет уменьшения давления наддува и потери за счет изменения плотности воздуха.

Величина изменения мощности под влиянием повышения температуры воздуха при работе двигателя с полностью открытым дросселем зависит от характеристики нагнетателя, а также от атмосферного давления и давления наддува, поэтому она трудно поддается определению. Для двигателя PWR-1830-92, например, при работе на полном дросселе на высоте несколько более расчетной повышение температуры на 10° F вызывает уменьшение давления наддува приблизительно на 0,25 дюйма (6 мм) рт. ст. Поскольку изменение давления наддува для этого двигателя на 1 дюйм (25,4 мм) рт. ст. соответствует изменению его полезной мощности на 25 л. с, а 0,25 дюйма будет соответствовать примерно% л. с, то повышение температуры на 10°F при указанных выше условиях приведет к уменьшению полезной мощности двигателя примерно на 6 л. с. В процентном отношении эффективная мощность двигателя при работе с полностью открытым дросселем при повышении температуры на 10° F будет составлять 99% от (1200—6), или 1182 л. с; общая потеря мощности при этом будет равна 18 л. с, или 1,5%.

Прежде чем закончить рассмотрение вопроса о влиянии температуры воздуха на мощность двигателя, необходимо указать, что температура воздуха влияет также на температуру двигателя, которая в свою очередь оказывает влияние на мощность двигателя как и плотность воздуха. Однако количественное выражение этого влияния для каждого отдельного двигателя потребует более точных данных о температуре отдельных цилиндров, чем те данные, которые можно получить в эксплуатационных условиях. Но поскольку основные показатели мощности получены во время работы мотора при температурах, близких к предельным, то очевидно, что снижения мощности можно ожидать только при температурах, превышающих предельные значения.

Переходя к вопросу о влиянии влажности воздуха на мощность двигателя, необходимо прежде всего установить, что мы понимаем под влажностью. Обычная вода, содержащаяся в воздухе в виде дождевых капель или даже микроскопических частичек влаги,, образующих туман, не вызывает снижения мощности двигателя. Наоборот, вода в таком сконденсированном состоянии при определенных условиях может использоваться для борьбы с детонацией горючей смеси при больших давлениях наддува. Это так называемый «впрыск воды». Вода, которая нас интересует в связи с рассматриваемым вопросом, находится в воздухе в газообразном состоянии, т. е. в виде паров.

Количество водяных паров, которое может быть поглощено воздухом, изменяется в зависимости от температуры воздуха. При повышении температуры воздуха количество содержащихся в нем водяных паров может увеличиться; в любой момент времени содержание водяных паров в воздухе характеризуется следующими четырьмя величинами: удельной влажностью, относительной влажностью, точкой росы и упругостью пара. Удельная влажность указывает на количество граммов водяного пара, содержащееся в 1 кг влажного воздуха; измеряется она в г/кг.