Смекни!
smekni.com

Акустическая коагуляция аэрозолей (стр. 3 из 3)

На рисунках 11 и 12 приведены полученные диаграммы направленности для излучателей с фазовыравнивающими элементами колеблющихся на первой и пятой гармониках, соответственно.

Рис. 11. Диаграмма направленности для дискового излучателя на первой гармонике

Рис. 12. Диаграмма направленности для дискового излучателя на пятой гармонике

Из представленных диаграмм следует, что при формировании колебаний, соответствующих высшим гармоникам, излучатель имеет меньшую ширину диаграммы направленности. Это может быть объяснено тем, что ширина диаграммы направленности есть величина, обратно пропорциональная волновым размерам излучателя, которые при работе на высших гармониках значительно увеличиваются.

Этот факт следует учитывать при практическом применении разработанных излучателей. Так, при необходимости эффективной коагуляции аэрозоля в протяженных замкнутых каналах (например, в вентиляционных шахтах) наиболее целесообразно использовать излучатели, работающие на высших гармониках. При этом, благодаря узкой диаграмме направленности, исключаются непроизводительные потери ультразвуковой энергии связанные с ее рассеянием и многократным отражением от стенок канала.

К случае коагуляции аэрозолей на открытых площадках (взлетно-посадочные полосы, автомагистрали, производственные помещения и другие места, где возможно исключить непосредственное воздействие высоко интенсивных акустических колебаний звукового диапазона на человека) наиболее эффективным будет использование низших гармоник излучателя, обеспечивающих более широкий сектор одновременной коагуляции аэрозоля (согласно диаграммы направленности до ~ 20 град. по уровню 0,707).

У разработанных излучателей присутствует излучение в тыльную сторону, диаграмма направленности которого характеризуется двумя максимумами, симметрично расположенными относительно главной акустической оси излучателя. Полученная форма диаграммы направленности и, значительно меньшая интенсивность излучения в тыльную сторону могут быть объяснены экранированием ультразвукового излучения корпусом УЗКС и отсутствием на тыльной поверхности фазовыравнивающих элементов. При необходимости, это излучение может экранироваться или использоваться как дополнительный энергетический фактор, способствующий коагуляции аэрозоля.

Для проверки эффективности разработанного фокусирующего дискового излучателя был проведен эксперимент по подавлению высококонцентрированного аэрозоля в замкнутом пространстве (колба диаметром 150 мм) в котором находился источник жидкостного аэрозоля (ультразвуковой медицинский ингалятор) с размером капель 1…5 мкм (капели этого размера наиболее легко приникает в альвеолы легких). Начальная концентрация аэрозоля составляла 10 мл/м3. На рисунке 13 а и 13 б показаны фотографии, иллюстрирующие изменение концентрации аэрозоля до и после ультразвукового воздействия.

а) б)

Рис. 13. Ультразвуковая коагуляция аэрозоля

Конечная концентрация аэрозоля не превышала 0,1 мл/м3. Время ультразвукового воздействия составило 1…2 сек. Был проведен ряд экспериментов, при которых начальная концентрация аэрозоля изменялась от 1 мл/м3 до 50 мл/м3. Во всех случаях, время ультразвукового воздействия, необходимое для коагуляции аэрозоля, не превышало

2 сек.

Показателем эффективности разработанных дисковых излучателей с фазовыравнивающими элементами могут служить результаты экспериментов по коагуляции аэрозоля, распространяющегося по коробу с поперечным сечением 300х300 мм, и длиной 10 м (рисунок 14).

1 – дисковый излучатель; 2 – короб; 3 – аэрозоль; 4 – источник аэрозоля; 5 – вентилятор

Рис. 14. Схема проведения эксперимента

Первоначально в коробе формируется локальное облако аэрозоля (размер частиц 1..5 мкм) протяженностью (L) около 1 м и концентрацией (C) 10 мл/м3, равномерной вдоль всего облака (вентилятор отключен). После ультразвукового воздействия с расстояния 50 м в течение 10 сек. распределение концентрации аэрозоля приняло вид, показанный на рисунке 15 (в процентах от исходной концентрации). Таким образом, аэрозоль был полностью коагулирован (>99%).

Рис. 15. Распределение концентрации аэрозоля до и после УЗ воздействия

Для проверки эффективности коагуляции аэрозоля при его перемещении по воздуховоду вместе с воздушными потоками, на одном из концов воздуховода был установлен вентилятор обеспечивающий расход воздуха до 2 м3/мин. При этом распределение концентрации аэрозоля вдоль короба приняло вид, показанный на рисунке 16 (верхняя кривая).

Рис. 16. Распределение концентрации аэрозоля при его распространении по коробу

После 10 секундного ультразвукового воздействия с расстояния 50 м аэрозоль в коробе практически полностью коагулировал, за исключением незначительной концентрации в области его источника, как показано на рисунке 16 (нижняя кривая).

Таким образом, на расстоянии 10 м от источника (на выходе из короба) аэрозоль обнаружен не был, а на расстоянии менее 3 м концентрация аэрозоля не превышала 1% от его начальной концентрации.

На основе разработанных конструкций ультразвуковых колебательных систем и дисковых излучателей были созданы ультразвуковые аппараты для коагуляции опасных аэрозолей с целью предупреждения чрезвычайных ситуаций.

Аппарат, показанный на рисунке 17, предназначен фокусированного воздействия на газовые среды высокоинтенсивными акустическими колебаниями (более 160 дБ). Аппарат может использоваться для локального сверхвысокоскоростного подавления аэрозолей локализованных в замкнутых пространствах (например, системы вентиляции зданий).

Рис. 17. Ультразвуковой аппарат для фокусированного высокоамплитудного осаждения аэрозолей

В состав аппарата входит ультразвуковая пьезоэлектрическая колебательная система в корпусе с дисковым излучателем, генератор электрических колебаний ультразвуковой частоты с регулируемой выходной мощностью.

Таблица 1. Технические характеристики аппарата

Частота излучения, кГц 0.3…22
Диаметр излучателя, м 0,34
Интенсивность колебаний, дБ не менее

160

Потребляемая мощность, ВА, не более

300

Масса колебательной системы с излучателем, кг, не более

6

На рисунке 18 показан ультразвуковой аппарат, который может использоваться для осаждения аэрозолей как техногенного, так и природного (туманы) характера на открытых пространствах (например, аэродромах).

Рис. 18. Ультразвуковое оборудование для осаждения аэрозолей на открытых пространствах

Таблица 2. Технические характеристики оборудования

Частота излучения, кГц 0.3…22
Диаметр излучателя, м 0,34
Интенсивность колебаний, дБ не менее 150
Потребляемая мощность, ВА, не более 450
Масса колебательной системы с излучателем, кг, не более 7

На основе проведенного анализа принципов функционирования и технических характеристик устройств, предназначенных для генерации ультразвуковых колебаний в воздушной среде установлена принципиальная невозможность их применения для эффективной коагуляции аэрозолей. Показано, что наиболее эффективно коагуляция аэрозолей может осуществляться при помощи широкополосных (многорезонансных) ультразвуковых излучателей на основе дискового излучающего элемента большой площади (0,1 м2 и более) и пьезоэлектрического преобразователя с концентратором. Практически разработаны конструкции фокусирующих и нефокусирующих излучателей, способных работать как на открытых, так и в замкнутых пространствах при уровне ультразвукового воздействия до 160 дБ.

Результаты экспериментальных исследований подтвердили высокую эффективность разработанных излучателей, способную обеспечивать малое время коагуляции, практически полное отсутствие аэрозоля в воздушной среде после ультразвукового воздействия. Показана возможность коагуляции наиболее опасных высокодисперсных аэрозолей с размером частиц менее 5 мкм.

Для питания созданных излучателей разработаны специализированные ультразвуковые генераторы мощностью 300 ВА и 450 ВА с возможностью внешнего управления по последовательному интерфейсу, позволяющему объединять излучатели и генераторы в единую систему в пределах некоторого объекта.

Работа выполнена при поддержке Совета по грантам Президента Российской Федерации для государственной поддержки молодых российских ученых – кандидатов наук № МК-383.2008.8.

Литература

1. Юдаев Б.Ф. Акустическая коагуляция аэрозолей. Бюллетень строительной техники, 2004, №6.

2. Мощные ультразвуковые поля. Под ред. Л.

Д. Розенберга. М., Наука, 1968.

3. V. N. Khmelev, I. I. Savin, D. S. Abramenko,

S. N. Tsyganok, R. V. Barsukov, A. N. Lebedev

"Research the Acoustic Cloth Drying Process in MockUp of Drum-Type Washing Machine", Intrnational

Workshops and Tutorials on Electron Devices and Materials EDM'2006: Workshop Proceedings. – Novosibirsk: NSTU, 2006.

4. V. N. Khmelev, I. I. Savin, D. S. Abramenko,

S. N. Tsyganok, R. V. Barsukov, D. V. Genne, A. N. Lebedev "Research of Ultrasonic Drying Process in Dryers of Ventilation Type" Intrnational

Workshops and Tutorials on Electron Devices and Materials EDM'2007: Workshop Proceedings. – Novosibirsk: NSTU, 2007.