Смекни!
smekni.com

Минералогия, петрография и кристаллография (стр. 3 из 3)

В природе графит встречается в виде рассеянных чешуек, либо их листоватых агрегатов, плотных зернистых агрегатов, либо плотных скрытокристаллических масс. Кроме того, в промышленности все шире используется искусственный (коксовый, доменный, ретортный) графит, специально получаемый из антрацита, нефтяного кокса, а также из отходов доменного производства. Чешуйчатые графиты по диаметру кристаллов разделяются на крупночешуйчатые и мелкочешуйчатые. В литокристаллическом кусковом графите размер кристаллов тот же, что и в мелкочешуйчатом, однако они не ориентированы, что затрудняет расщепление агрегата и сдвиги при деформации. Искусственный графит по качеству приблизительно соответствует чешуйчатому и плотнокристаллическому, отличаясь большей чистотой и меньшей кристалличностью. Выделенные природные разновидности графита не бывают совершенно чистыми; они содержат примеси минералов-спутников, газов, а также непревращенный в графит углерод. При производстве анализов определяют содержание ографиченного углерода (графита), летучих (газов и воды) и золы (минеральные примеси).

Промышленные руды чешуйчатого графита содержат от 2 до 15% (редко более) этого минерала. Они легко обогащаются флотацией с получением концентрата, содержащего 60% и более графита. Еще более обогатимы выветрелые чешуйчатые руды, в которых срастания графита с другими минералами отсутствуют. В плотнокристаллических кусковых pудах массовая доля графита составляет 35-40% и более; без обогащения используется руда, в которой эта величина поднимается до 60-80% Скрытокристаллическая руда (аморфный графит) труднообогатима. Без обогащения используются руды с содержанием углерода около 70%, бедные руды (20-40%) обогащаются ручной разборкой.

Основная масса графита потребляется в качестве огнеупоров (чешуйчатая и плотнокристаллическая разновидности) в основном в черной и цветной металлургии, производстве высокоуглеродистой стали и в литейном деле (для покрытия внутренней поверхности литейных форм, где обычно используют аморфный графит в смеси с огнеупорной глиной, молотой слюдой, тальком или песком). В США на эти три отрасли промышленности приходится более половины потребления графита. Значительное количество графита идет на производство всевозможных смазок, применяемых в водной и иных средах, токопроводящей резины, сухих батарей, электродов, скользящих контактов, деталей ядерных втулок и других изделий. Графит является основным сырьем для промышленного синтеза технических алмазов, находит широкое применение в порошковой металлургии и в производстве реакторов и ракетных двигателей, карандашей, туши, копировальной бумаги, всевозможных реторт, полупроводников.

Различные отрасли промышленности предъявляют свои специфические требования к качеству графитного сырья (руд и концентратов). В настоящее время производятся следующие типы и марки графита: литейный, элементный, электроугольный, аккумуляторный, тигельный, карандашный, смазочный, специальный малозольный, графит для специальных сталей, особо чистый графит для ядерных реакторов и др. Его состав варьирует в широких пределах: 40-97% графита, 0,7-7,5% летучих, 1,75-26,5% золы. Общими лимитирующими показателями являются зольность, влажность, содержание летучих, иногда железа, серы, меди, фосфора и других элементов, а также величина рН водной вытяжки.

Максимальное мировое производство графита (около 950 тыс. т.) зафиксировано в 1989-1990 г. Наиболее крупными продуцентами являются КНР (около 40-45% всего производимого в мире графитового концентрата), далее следуют Республика Корея, Индия, КНДР, Бразилия, Мексика, Канада, Чехия. В странах СНГ наибольшая добыча приходится на Украину и Россию. Преобладающая часть запасов кристаллического графита сосредоточена в КНР, на Мадагаскаре, в Зимбабве, Бразилии и странах CHГ. Свыше 90% запасов скрытокристаллического графита приходится на Мексику, КНР, Россию и Республику Корея. Мировое производство синтетического графита значительно превышает 1,5 млн т и осуществляется в ряде промышленно развитых стран: в США, Канаде, Японии, странах Западной Европы.

В природе имеется три мыслимых источника углерода как исходного материала для образования графита: магматические эманации, карбонатные породы и органические остатки (а также угли) среди осадочных пород.

Все реакции могут реализоваться в глубинных условиях при высоких температурах, отражая возможный механизм формирования собственно магматических, пневматолито-гидротермальных скоплений кристаллического графита.

Может также иметь место и ассимиляция карбонатных пород интрудирующей магмой с обогащением ее углеродом. Таким образом, карбонатные породы могут обусловить появление концентраций кристаллического графита скарнового и магматического генезиса.

Органические остатки осадочных пород при метаморфизме могут превращаться в графит. По мере увеличения степени метаморфизма при определенных условиях органический углерод переходит вначале в аморфный графит (цеолитовая фация), затем через серию промежуточных разновидностей в кристаллический (амфиболитовая фация). Если образование графита шло за счет рассеянного углеродистого вещества, то в результате регионального метаморфизма могли появляться графитистые гнейсы с высококачественным чешуйчатым графитом; в случае концентрированного исходного углеродного вещества (пласты угля или горючих сланцев), подвергшегося контактово-термальному локальному метаморфизму, возможно образование скрытокристаллического (аморфного) графита с сохранением текстур исходных пород, локальных неографиченных участков и примесей других минералов.

Несмотря на наличие значительных собственно магматических, пегматитовых и пневматолито-гидротермальных, скарновых месторождений высококачественного кристаллического графита, основное значение в мировом балансе графитового сырья имеют метаморфогенные месторождения, представленные телами вкрапленных руд чешуйчатого графита в гнейсах, кристаллических сланцах и др. обычно докембрийских метаморфических образованиях, а также пластовыми залежами и линзами апокаменноугольного преимущественно скрытокристаллического графита.

В целом можно говорить о трех главнейших мировых геолого-промышленных типах месторождений графита:

1. Неправильные тела, линзы, штоки и жилы богатых руд высококачественнного плотнокристаллического графита в магматических (чаще сиенитовых), пегматитовых, скарновых и метаморфических кристаллических породах; в этот тип попадают магматические, пегматитовые и пневматолито-гидротермальные, скарновые месторождения, причем их генезис как правило является предметом дискуссий. Сюда относятся месторождения Ботогольское, Шри-Ланки и Индии (в штатах Раджастан, Орисса, Мадрас), Канады (Бакингем и Грейнвилл в провинции Квебек, Блэк-Дональд в провинции Онтарио), США (Стербридж в штате Массачусетс, Диллон в штате Монтана, Тиконгероги в штате Нью-Йорк), Бразилии, Японии (Сеннотани в префектуре Тояма), возможно Норвегии (Скаланд на о-ве Сенья) и др.

2. Пластовые залежи и линзы метаморфических вкрапленных руд чешуйчатого графита в глубокометаморфизованных породах преимущественно докембрийского возраста, включая их выветрелые разновидности; в составе этого типа - месторождения Украинского щита (Завальевское и др.) на Украине, Урала (Тайгинское, Мурзинское), Карелии (Ихальское) и др. регионов в России, Южной Чехии и Северной Моравии в Чехии, штатов Нью-Йорк, Пенсильвании, Алабамы и Техаса в США, острова Мадагаскар (Малагасийская республика) и др.

3. Пластовые залежи и линзы богатых руд скрытокристаллического (аморфного) графита в стратифицированных осадочных толщах различного возраста, образованные за счет контактового метаморфизма угольных пластов и битумов. Примерами этого типа являются месторождения Тунгусской провинции (Курейское, Ногинское и др.) в России, штата Сонора в Мексике, Штирии и Нижней Австрии в Австрии, Республики Корея и КНДР.