Смекни!
smekni.com

Економіко–математичне моделювання (стр. 15 из 17)

(7)

З другого боку, зважаючи на нерівність

маємо в силу (6)

(8)

Зіставляючи (7) і (8), одержуємо:

і нерівність (З) доведена з постійною:

Доведемо тепер достатність. Хай для послідовності {nk} справедлива нерівність (3) всякий раз, коли число р і поліном R(x) вибрано в відповідності з умовою теореми. Доведемо, що всяка функція:

належатиме і простору

для будь-яке ρ
(0,2 + ε), звідси і витікатиме, що послідовність
при будь-яке
.

Хай спочатку f(x) - поліном і хай:

(9)

З рівності (4) виходить, що:

(10)

Використовуючи (3) і (10), маємо:

(11)

Нерівність (11), будучи виконано для фіксованої функції

і всіх простих множин Е з достатньо дрібними становлячими інтервалами, очевидно, буде виконано для цієї ж функції і для будь-яких вимірних множин Е на відрізку [0,2л]. Але тоді нерівність

(11) буде виконано і для будь-яких функцій f(x) вигляду

і будь-яких вимірних множин Е. По лемі
[*=1 для будь-яких
, і теорема 1 повністю доведена.

Теорема 2. Хай

, ε>0 за системою Уолша, тоді існує постійна С>0, така, що для будь-кого натурального р = 2n і будь-якого полінома:

справедлива нерівність:

(12)

Назад, якщо для послідовності {nk} існує постійна С > 0, така, що для будь-кого натурального р = 2n і будь-якого полінома:

справедлива оцінка (12), то послідовність

для будь-кого ρ,
.

Доведення. Доведемо спочатку необхідність.

Хай:

Утворюємо множину:

Хай далі:

Оцінимо

, тоді:

(13)

Помітимо тепер, що на інтервалі

цифри х в двійковому розкладанні до номера nспівпадають з відповідними цифрами у числа
, якщо не допускати в двійковому розкладанні нескінченних послідовностей одиниць.

Хай:

Тоді, як відомо:

якщо

Тому:

і в силу (13):

(14)

Якщо у визначенні функції f(х) покласти:

то нерівності (13) і (14) звернуться в рівність.

Для такої функції маємо в силу (14) і умови теореми:

звідки:

або:

що і доводить необхідність теореми.

Доведемо тепер достатність. Хай для послідовності {nk} справедлива нерівність (12) при будь-кому р=2n і поліномі:

або

Тоді для полінома:

і множини:

справедлива оцінка (14), тобто:

(15)

Через умову теореми права частина нерівності (15) не перевершує величини:

тобто:

(16)

Оцінка (16), будучи справедлива для простих множин Е з умовою

, розповсюджується для фіксованого полінома f(х) і на довільні вимірювання множини
, а, отже, і на довільні функції

з умовою
. Через лему нерівність (16) тягне за собою

умова

при всіх
, тобто
при

всіх

.

Теорема повністю доведена.

Наступні два кількісні результати торкаються густини лакунарних послідовностей Уолша і розподілу значень іденпотентних поліномів (терезів лінійних кодів). Ці оцінки представляють як самостійний інтерес (перша з них значно усилює аналогічний результат А. Бонами так і можуть мати додаток в загальній математичній теорії кодування Л передачі інформації.

Теорема 3. Хай Еn n-мірне лінійний простір над полем з двох елементів.

- пряма сума двох екземплярів цього простору, яке ми потрактуємо так само, як безліч всіх пар (а,b), де а, b – елементи Еn.

Тоді безліч U всіх пар вигляду (а, а-1), де

і символом а-1 позначений елемент, зворотний до елемента а в полі Еn має потужність 2n-1, лежить в лінійному просторі W2n потужності 22n. Іншими словами, множина U є щільним B2 (або
(4)) множиною в тому значенні, що на ньому досягається верхня грань густини В3-последовательностей.

Доведення. Допустимо осоружне, тоді знайдуться такі 4 різний елемента а, b, c, d з U, що:

Остання система еквівалентна системі:

а + b = c + d, a-l + b-1 = с-1 + d-1.

що рівносильне:

а + b = c + d, ab = cd

яка, як неважко бачити, може мати не більше одного рішення (з точністю до перестановки). Дійсно, останнє твердження рівносильне тверждення про те, що рівняння х(х + k)= r має не більше двох різних розв’язків по х для х, k, r з Еn. Покажемо це. Хай є інше рішення у: у(у + k) =r.

Тоді

, звідки
, тобто
, звідки або x = у, або у = х + k ( нагадаємо, що En - поле характеристики 2).Тим самим теорема 3 повністю доведена.