Смекни!
smekni.com

Игумнов Н. П. Типовые элементы и устройства систем автоматического управления (стр. 30 из 33)

Светодиоды выпускаются в различном исполнении: точечном, линейном, цифрознаковом. Наибольшее распространение получили семисегментные цифровые светодиодные индикаторы. Стилизованное изображение цифры составляется из семи светодиодных сегментов, расположенных в виде цифры 8.

При подаче сигналов на определенные сегменты высвечивается требуемая цифра. Например, для высвечивания цифры 5 необходимо подать сигналы на сегменты a, f ,q, c, d, рисунок 9.2.

Рисунок 9.2 – Семисегментный индикатор

Линейный светодиодный индикатор представляет собой интегральную схему в виде светящегося столбика, образованного последовательно включенными светодиодными сегментами, и блока управления. Внешне такой индикатор выглядит как линейная шкала, он служит для отображения непрерывно меняющейся информации и является аналогом стрелочного измерительного прибора. Эти устройства используются в многоканальных системах для индикации однотипной информации. Несколько расположенных рядом линейных шкал очень удобны для восприятия оператором.

Люминесцентные индикаторы также относятся к типу активных. Они представляют собой электронную вакуумную лампу с катодом, управляющей сеткой и несколькими анодами. Аноды покрыты слоем люминофора, который светится, если на него попадает поток электронов, испускаемых катодом. Устройство люминесцентного индикатора показано на рисунке 9.3. В стеклянном баллоне 5 расположены катод 1, сетка 3 и аноды 2 на подложке 4. Катод выполнен в виде двух тонких вольфрамовых нитей, натянутых параллельно анодам. Между катодом и анодами находится плоская сетка. На катод подается напряжение накала, он нагревается и испускает поток электронов. На сетку и аноды подаются положительные (по отношению к катоду) напряжения. Поток электронов из катода устремляется к положительно заряженной сетке, пролетает ее по инерции и попадает в ускоряющее поле тех анодов, на которые подано напряжение. При достижении анодов кинетическая энергия разогнавшихся до большой скорости электронов переходит в световую энергию излучаемых люминофором квантов света (как и в обычной электронно-лучевой трубке).

Серийно выпускаемые промышленностью люминесцентные индикаторы работают при напряжении накала до 5 В и сеточном напряжении 20 – 30 В.

Рисунок 9.3 – Люминесцентный индикатор

К пассивным относятся жидкокристаллические индикаторы. Считывание с них информации возможно лишь при наличии внешнего освещения – естественного или искусственного. Принцип действия таких индикаторов основан на изменении степени прозрачности органических жидкокристаллических веществ, находящихся в электрическом поле.

Конструктивно жидкокристаллический индикатор, рисунок 9.4 выполнен в виде двух плоских стеклянных пластин 1, разделенных по периметру прокладкой 2. На внутреннюю поверхность одной пластины наносятся прозрачные проводящие электроды-сегменты 3, форма и взаимное расположение которых будут определять индицируемые знаки. На всю вторую пластину 1 наносится проводящий прозрачный электрод 4. Пространство между пластинами заполняется жидкокристаллическим веществом, толщина слоя которого составляет примерно 10 микрон. Собранный таким образом пакет из стеклянных пластин, электродов и жидкого кристалла герметизируют. Выводы от электродов проходят через герметик. Для управления индикатором между общим электродом и электродами-сегментами подается напряжение 5 – 15 В.

Рисунок 9.4 – Жидкокристаллический индикатор

Величина тока жидкокристаллического индикатора очень мала, поскольку вещество жидкого кристалла обладает большим удельным сопротивлением – несколько МОм на см. Поэтому и потребление энергии таким индикаторам существенно меньше, чем у индикаторов других типов, хотя не следует забывать, что для жидкокристаллического индикатора требуется внешний источник света и не всегда бывает достаточно естественной освещенности. В этом случае требуется дополнительная энергия для питания источника света. При хорошей внешней освещенности контрастность знаков по отношению к фону составляет 70 – 90%. Жидкокристаллические индикаторы относятся к высоконадежным элементам автоматики (наработка на отказ составляет несколько десятков тысяч часов), однако необходимо не допускать их нагрев выше 60 оС, а также исключить постоянную составляющую в перемененном напряжении. С использованием жидких кристаллов созданы индикаторные панели и экраны. Такие устройства позволяют выводить большой объем информации. На экране отображаются цифровые и буквенные тексты, графики, таблицы, схемы и рисунки.

Оптимальным с точки зрения сочетания качества изображения и стоимости является индикаторный экран на базе электронно-лучевой трубки. С их помощью технологический персонал оперативно, практически мгновенно, получает интерисующую его информацию о состоянии объекта управления и (или) системы управления, причем в самом льготном режиме – диалоговом, т.е. в режиме «вопрос - ответ». В мониторе персонального компьютера используются именно электронно-лучевая трубка (в ноутбуке с целью экономии энергии применяется жидкокристаллический экран). В электронно-лучевой трубке с помощью двух отклоняющих катушек можно изменять пространственное положение электронного луча на экране и выполнить изображение, состоящее более чем из миллиона точек. Но устройства управления электронно-лучевой трубки с трудом согласуются с наиболее перспективными цифровыми системами формирования изображения. В настоящее время более удачным средством для индикации большого объема информации являются плоские информационные экраны или панели. Работа их основана на различных физических принципах, но все они выполняют две задачи: обеспечивают пространственное распределение электрических сигналов для включения любого элемента индикации на всей поверхности экрана-панели и осуществляют преобразование электрического сигнала в оптическое излучение. Для этого светоизлучающие элементы экрана располагаются в строго фиксированных точках. При этом возможны два способа адресации: параллельный (все элементы индикации независимы и могут включаться в любом порядке) и последовательный (в каждый, очень короткий момент времени включен лишь один элемент и вся информация создается путем поочередного включения всех необходимых элементов). При параллельной адресации каждый элемент (точка на экране) должен быть соединен с источником сигнала проводником. Это технически трудно осуществимо. Например, для квадратного экрана с 10000 элементов (сто точек в каждой из ста строчек) потребуется 10000 проводников и столько же ключей для управления экраном. При последовательной адресации число соединительных проводников и ключей (элементов управления) может быть резко уменьшено за счет применения матричного построения экрана. Такой экран выполняется с матричной (решетчатой) структурой, как показана на рисунке 9.5.

Рисунок 9.5 – Информационный матричный экран

На нижнюю стеклянную пластину 1 наносятся параллельные электроды 2, на верхнюю стеклянную пластину 3 – параллельные вертикальные электроды 4. между электродами 2 и 4 помещается слой активного оптического материала 5, изменяющего свои оптические свойства при прохождении тока или под воздействием электрического поля. При одновременной подаче напряжения на один из горизонтальных электродов 2 и один из вертикальных электродов 4 происходит включение элемента индикации, находящегося на их пересечении. При этом для экрана с 10000 элементов при последовательной матричной адресации потребуется всего 200 соединительных проводников и ключевых элементов управления, т.е. в 50 раз меньше, чем при параллельной адресации. Но при последовательной адресации необходимы весьма быстродействующие электрооптические преобразователи. Для нормального восприятия человеком – оператором картинка на экране должна повторяться 50 раз в секунду. Следовательно, каждый элемент экрана будет включаться на время 1/950 · 10000) = 2 мкс. Используемые в настоящее время оптические материалы, реагирующие на электрические сигналы (жидкие кристаллы, газоразрядная плазма, многие электролюминофоры), слишком инерционны и не успевают выдать световой сигнал. Можно не сомневаться, что появятся промышленные образцы индикаторных экранов-панелей, не уступающих по стоимости и качеству изображения электронно-лучевой трубке.

Большая часть информации, по которой принимаются управленческие решения, может быть не только получена на экране дисплея (монитора), но и зафиксирована на машинограмме с помощью АЦПУ (принтера). Например, по команде оперативного персонала могут быть отпечатаны мгновенные текущие значения режимных параметров, их позиции на технологической схеме, регламентные значения и отклонения текущих значений от регламентных; составы материальных потоков (в этом случае фиксируется позиция пробоотборного устройства, время отбора и результаты анализа) и другая информация.

Для отображения положения регулирующего органа используются дистанционные указатели ДУП. Данный указатель, рисунок 9.6 состоит из измерительного моста и узла питания (на рисунке не показан). Для подключения к датчику положения регулирующего органа используются клеммы 3 – 4 – 5 указателя. Плечи неуравновешенного измерительного моста образуются потенциометром R3, обмотками ДП или активным сопротивлением в случае реостатного преобразователя, а также резисторами R4 и R6. В диагональ моста включен измерительный прибор ИП (микроамперметр 0 – 100 мкА); чувствительность его выбирается потенциометром R5. выпрямление тока производится полупроводниковыми диодами Д3 и Д4. мост балансируется потенциометром R3. резисторы R2, R4, и R6 служат для ограничения тока в цепях питания моста и питания преобразователя.