Смекни!
smekni.com

по астрономии на тему: «Планеты гиганты» (стр. 2 из 8)

Наиболее известная и самая заметная из таких деталей - Большое Красное Пятно, которое наблюдается уже около 340 лет. Находясь в умеренных южных широтах Юпитера, оно медленно перемещается, делая за сто лет примерно 3 оборота. По краям Красного Пятна располагаются облака, состоящие из аммиака. По предыдущим наблюдениям космической станцией Galileo, также принадлежащей NASA, граничные области Большого Красного Пятна вращаются с большой скоростью против часовой стрелки, в то время как внутренняя часть медленно вращается в противоположном направлении. За последнее время Большое Красное Пятно несколько изменилось. На фотографиях, полученных ранее космическими кораблями NASA Voyager и Galileo, Пятно окружает темная область, что указывает на отсутствие облаков вокруг него. Теперь же эту область заполнили светлые аммиачные облака.

Цвет облаков меняется с высотой: синие структуры - самые верхние, под ними лежат коричневые, затем белые. Красные структуры - самые низкие. Красноватый оттенок планеты приписывают главным образом присутствию в атмосфере красного фосфора и, возможно, органике, возникающей благодаря электрическим разрядам. В области, где давление порядка 100 КПа, температура составляет около 160°К.

Температура верхних облаков составляет –130°С. Суточный температурный диапазон составляет 184°K - 242°K / -89°С - -31°С. Юпитер выделяет на 60% больше энергии, чем получает от Солнца. В атмосфере Юпитера замечены грозы. Атмосфера отражает 45% падающего солнечного света. Установлено также наличие ионосферы, протяженность которой по высоте — порядка 3000 км.

Зонд с АМС "Галилео" в 1995г парашютировал сквозь верхние слои атмосферы Юпитера, опустившись на 150 км вглубь атмосферы, передавая данные относительно состава и физических условий среды. Наземные наблюдения места вхождения зонда показали, что оно, по-видимому, было относительно свободно от облаков. Этим можно объяснить, почему не было получено почти никаких подтверждений существования ожидаемых трех слоев облаков (состоящих на самых больших высотах из кристаллов аммиака, гидросульфида аммония в середине, а внизу - из водяных и ледяных кристаллов). Скорость ветра, достигающая 530 км/час, оказалась даже больше, чем ожидалось. В то же время содержание гелия составило только около половины ожидаемого. Вероятное объяснение этого явления - увеличение концентрации гелия к центру планеты.

В 1997г космический телескоп Hubble впервые обнаружил Большое Темное пятно возле северного полюса планеты. В конце 2000г зонд Cassini с 1 октября по 15 декабря фотографировал пятно во всех подробностях с помощью УФ-камеры. В течение 11 недель это пятно росло в размерах, закручивалось, темнело и меняло форму. Потом, когда зонд Cassini стал удаляться от Юпитера, пятно стало бледнеть. По мнению специалистов, Темное пятно на Юпитере может быть относительно кратковременным "облачным" явлением, поэтому телескоп Hubble и видел его лишь однажды. И если бы Cassini пролетал мимо Юпитера на месяц или два позже, то он, может быть, не увидел бы никакого пятна. Есть и другое мнение. Возможно, темное пятно является каким-то побочным эффектом полярных сияний на Юпитере. Там они в сотни и тысячи раз ярче, чем на Земле, ведь магнитное поле Юпитера намного сильнее земного, а сам Юпитер является мощным источником электронов и ионов (для земных полярных сияний заряженные частицы поставляет Солнце).

Кольца

1979 году во время прохождения мимо планеты космического аппарата Вояджер-1 на Юпитере были обнаружены кольца, однако, их происхождение оставалось загадкой. Позднее космическим аппаратом Галилей, который находился на орбите вокруг Юпитера с 1995 по 2003 годы, были получены данные о том, что эти кольца возникли в результате столкновения метеорных тел с небольшими спутниками Юпитера. Например, небольшое метеорное тело, ударившись в крошечную Адрастею, вонзится в нее и испарится, в результате чего большие количества грязи и пыли будут выброшены на орбиту вокруг Юпитера. На рисунке показано затмение Солнца Юпитером, так, как оно наблюдалось с космического аппарата Галилей. Маленькие пылевые частицы в высоких слоях атмосферы Юпитера, а также частицы пыли, которые входят в состав колец, видны в отраженном солнечном свете

Магнитное поле

Радиоизлучение Юпитера, обнаруженное в 1955г, послужило первым признаком наличия у него сильного магнитного поля, которое в 4000 раз сильнее земного и простилается на 650 миллионов километров (за орбиту Сатурна!). Его магнитный дипольный момент почти в 12000 раз превосходит дипольный момент Земли, но так как напряженность магнитного поля обратно пропорциональна кубу радиуса, а он у Юпитера на два порядка больше, чем у Земли, то напряженность у поверхности Юпитера выше, по сравнению с Землей, только в 5-6 раз. Магнитная ось наклонена к оси вращения на (10,2 ± 0,6)°. Юпитер обладает обширной магнитосферой, которая подобна земной, но увеличена примерно в 100 раз. Закручивание электронов вокруг силовых линий порождает радиоизлучение, причем задержанные около планеты электроны дают синхротронное излучение в диапазоне дециметровых волн. Декаметровое излучение, наблюдаемое только от некоторых областей планеты, связано с взаимодействием ионосферы Юпитера со спутником Ио, орбита которого проходит внутри огромного плазменного тора. Это взаимодействие порождает также полярные сияния. Обнаруженное "Вояджерами" излучение в километровых длинах волн возникает в высоких широтах планеты и в плазменном торе. Зонд обнаружил также интенсивный радиационный пояс.
Наблюдая 18 декабря 2000 года в течение 10 часов, удалось обнаружить пульсирующий источник рентгеновского излучения в полярных районах верхних слоев атмосферы Юпитера с помощью оборудования орбитального телескопа "Chandra". Вспыхивает наподобие маяка каждый 45 минут. Никакие из существующих ныне теорий не могут объяснить ни природу возникновения излучения, ни его пульсирующий характер.
Открыты таинственные следы, оставляемые ближайшим к Юпитеру крупным спутником Ио, в ионосфере планеты - в области, расположенной над атмосферой, в которой и образуются полярные сияния. Удалось также обнаружить, что два других галилеевых спутника - Ганимед и Европа - также оставляют подобные "магнитные следы" овальной формы, хотя и меньшие по интенсивности. О том, что Ио, знаменитый своей исключительной вулканической активностью, оставляет подобные следы, ученым было известно и ранее. Удивительным оказалось то, что такие же следы оставляют и два других спутника, на которых вулканической деятельности не зафиксировано. Вопрос о том, "чертит" ли в магнитосфере Юпитера и свой след последний из крупных спутников планеты - Каллисто - останется, по всей видимости, загадкой еще на многие годы.

Спутники

Первые четыре спутника (Ио, Европа, Ганимед, Каллисто) были открыты Г. Галилеем еще в 1610г. Это открытие послужило мощным толчком к утверждению гелиоцентрической системы мира Коперника, явившись яркой моделью этой системы. После пролета "Вояджеров" к 1980г стало известно шестнадцать естественных спутников, вращающихся вокруг Юпитера. Они разделяются на четыре группы. По круговым орбитам в экваториальной плоскости движутся четыре маленьких внутренних спутника (Метида, Адрастея, Амальтея и Теба) и четыре больших галилеевых спутника (Ио, Европа, Ганимед и Каллисто). Третья группа (Леда, Гималия, Лиситея и Элара) - маленькие спутники на круговых орбитах, наклоненных под углом 25° - 29° к экваториальной плоскости и лежащих на расстоянии 11 - 12 млн. км от Юпитера. Внешняя группа (Ананке, Карме, Пасифе и Синопе - названы по именам возлюбленных Юпитера) - маленькие спутники с обратным движением по орбитам. Эти орбиты являются относительно вытянутыми эллипсами с существенным наклонением к экваториальной плоскости и лежат на расстоянии 21 - 24 млн. км от Юпитера. Полагают, что это захваченные планетой астероиды. Четыре галилеевых спутника и их движения по орбите можно легко увидеть в маленький телескоп или бинокль. К концу 2000 года было открыто 10 небольших спутников и общее количество спутников Юпитера стало 28. В конце ноября - начале декабря 2000 года профессором Дэвидом Джевиттом (David Jewitt) и аспирантом С. Шеппардом (S. Sheppard) из Гавайского университета, которые вели наблюдения с помощью камеры 2,2-метрового телескопа на горе Мауна Кеа и открыли 10 спутников. Девять лун находятся на расстоянии 21-24млн. км от планеты и вращаются в обратном направлении по вытянутым эллиптическим орбитам с наклонением от 15о до 30о, а одна на удалении 13млн. км и вращается в прямом направлении. Эта же команда в 2001-2003гг (к 1 июня 2003г) довела общее число открытых спутников до 61. Это небольшие луны до 4 км в диаметре, по видимому захваченные Юпитером уже позже.

Галилеевы спутники

ИО

ЕВРОПА

ГАНИМЕД

КАЛЛИСТО

Галилеевские

Масса (1020 кг)

Радиус (км)

Плотность (кг/м3)

Радиус орбиты (103км)

Орбитальный период (дней)

Наклон орбиты

Ексцентри-ситет

1 ИО (JI), 7.01.1610

893,2

1821,6

3530

421,6

1,7691

0,04

0,004

2 Европа (JII), 7.01.1610

480,0

1560,8

3010

670,9

3,5512

0,47

0,0101

3 Ганимед (JIII), 7.01.1610

1481,9

2631,2

1940

1070,4

7,1545

0,21

0,0015

4 Каллисто (JIV), 7.01.1610

1075,9

2410,3

1830

1882,7

16,6890

0,51

0,007