Смекни!
smekni.com

Исследование движения центра масс межпланетных космических аппаратов (стр. 6 из 14)

Требования для проведения коррекции:

- предельное суточное смещение орбиты по долготе Di = 0,1°

- предельное отклонение наклонения Dl = 0,1°.

В пересчете отклонения Dl на отклонение по периоду получим:

DT = 1,597 сек. - максимальное отклонение по периоду.

При помощи программы моделирования было просчитано 3 ме­сяца и получено, что средний период изменился на 3,2 сек, а накло­нение - на 0,001°.

Таким образом, коррекцию периода надо делать примерно 1 раз в 1,5 мес.

Нужный импульс скорости - 1 м/с за время активного существо­вания - 5 лет - коррекцию периода надо провести 40 раз, DV = 40 м/с, масса топ­лива = 10,8 кг.

За 5 лет Di = 0,02° - коррекцию наклонения проводить не надо.

Графики изменения элементов орбиты за 3 месяца приведены на рис.31-42.


2.6. ДВИЖЕНИЕ МКА ОТНОСИТЕЛЬНО ЦЕНТРА МАСС

2.6.1. УРАВНЕНИЯ ДВИЖЕНИЯ ОТНОСИТЕЛЬНО ЦМ КА

При рассмотрении движения относительно ЦМ КА используют уравнения Эйлера:

Jxwx + (Jz-Jy)wywz = Mxy + Mxв

Jywy + (Jx-Jz)wxwz = Myy + Myв

Jzwz + (Jy-Jx)wywx = Mzy + Mzв

где Jx, Jy, Jz - главные моменты инерции,

My - управляющий момент,

Mв - возмущающий момент.

Так как угловые скорости КА малы, следовательно, можно пре­небречь произведением угловых скоростей, значит, уравнения Эй­лера имеют вид:

Jxwx = Mxy + Mxв

Jywy = Myy + Myв

Jzwz = Mzy + Mzв

Главные моменты инерции:

Jx = 532 кг´м2, Jy = 563 кг´м2, Jz = 697 кг´м2.

Центробежные моменты инерции принимаются равными 0.

Возмущающий момент Mв возникает из-за того, что двигатель коррекции расположен не в центре масс КА, и реактивная тяга, ли­ния действия которой находится на удалении (плече) l от центра масс КА, создает паразитный крутящий момент Mв.

Mв = P´l,

где P = 25 H - тяга корректирующего двигателя,

l = 4 мм - плечо.

Таким образом, Mв = 25´0,0004 = 0,1 Нм.

2.6.2. СТАБИЛИЗАЦИЯ УГЛОВОГО ПОЛОЖЕНИЯ ПРИ КОРРЕКЦИИ

Основное требование, предъявляемое в этом режиме:

- точность поддержания направления импульса коррекции - не хуже 1 угл.мин.

Целью данной главы является исследование динамики системы при стабилизации углового положения при коррекции.

Функциональная схема МКА состоит из следующих эелементов:

1) МКА - малый космический аппарат.

МКА описывается как абсолютно твердое тело.

2) ДУС - датчик угловой скорости.

В качестве ДУС используется командный гироскопический при­бор. Он описывается колебательным звеном с параметрами T = 1/30 c-1 и e = 0,7, а также нелинейным звеном с насыщением 2°/сек.

3) АЦП - аналогово-цифровой преобразователь.

Преобразует аналоговый сигнал с ДУС в цифровой сигнал.

4) ЦАП - цифро-аналоговый преобразователь.

Преобразует цифровой сигнал с ЦВМ в аналоговый.

5) ШИМ - широтно-импульсный модулятор.

Предназначен для формирования скважности импульсов управ­ления двигателем стабилизации, пропорциональной управляю­щему напряжению. В этом случае мы имеем среднее значение управляющего момента, пропорциональное управляющему сиг­налу.

Так как динамика ЦАП, АЦП, ШИМ как электронных аналого­вых приборов оказывает на систему незначительное влияние по сравнению с динамикой механических (ДУС, двигатели) динамиче­ские звенья, описывающие эти элементы, можно заменить соответ­ствующими коэффициентами усиления. В первом приближении значения коэффициентов не принципиально.

6) Двигатель стабилизации.

Двигатель описывается нелинейностью с насыщением 0,127 Нм и звеном запаздывания с Тд = 0,05 сек.

Тяга двигателя 0,1 Н

7) ЦВМ.

В ЦВМ формируется управление по углу и угловой скорости. За­кон управления имеет вид:

e = K(K1j +K2j), К = 1, К1 = 550, К2 = 430.

Эти коэффициенты подбирались на модели, исходя из требова­ний точности поддержания направления корректирующего им­пульса, а также длительности переходного процесса.

Система была промоделирована по каналу х. Для других каналов схемы моделирования будут аналогичными.

Для разомкнутой системы были по­строены ЛАЧХ и ФЧХ. Эти графики представлены на рис.43.

Результаты моделирования замкнутой системы представ­лены на рис.44-46.

Таким образом, в результате моделирования получено, что про­цесс стабилизации углового положения происходит примерно за 15 сек., статическая точность поддержания углового положения - 0,62 угл.мин., что полностью удовлетворяет требованиям технического задания.


3. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ

3.1. ОРГАНИЗАЦИЯ И ПЛАНИРОВАНИЕ ВЫПОЛНЕНИЯ ТЕМЫ

Сроки выполнения и затраты на исследования в большой мере зависят от организационных условий выполнения исследовательских работ Поэтому необходимо в первую очередь определить, хотя бы в общем виде, порядок и организацию проведения дипломной работы по заданной теме.

Организация дипломной работы по любой теме складывается из определённых этапов и подэтапов, каждый из которых хотя и может иметь разное содержание, однако структурно занимает равное положение для всех дипломных работ, выполняемых в данной отрасли.

Таким образом, структура дипломной работы может быть сформирована по типовой схеме, упорядоченной в соответствии с конкретным видом исследования. Состав дипломной работы по заданной теме, а также потребные категории исследований по этапам и подэтапам представлены в табл.1.

Этапы

Содержание

Исполнители

1.

Техническое задание

Постановка задачи. Определение состава программного продукта.

Руководитель Разработчик

2.

Эскизный проект

Разработка общего описания программного продукта.

Руководитель Разработчик

3.

Технический проект

Разработка структуры программного продукта.

Разработчик

4.

Рабочий проект

Программирования и отладка программы. Проверка результатов и внесение корректив в программу.

РуководительРазработчик

5.

Внедрение

Оформление необходимой документации.

Разработчик

3.2. ОПРЕДЕЛЕНИЕ ЗАТРАТ ТРУДА

Первым шагом при определении себестоимости программного комплекса является расчет трудоемкости создания и внедрения. Расчет производится по методике, приведенной в документе «Типовые нормы времени на программирование задач для ЭВМ». Типовые нормы времени предназначены для определения затрат времени на разработку программных средств вычислительной техники (ПСВТ).

Исходными данными для расчета трудоемкости, при разработке программы являются:

Количество разновидностей форм входной информации - 2,

в том числе:

информации, получаемой от решения смежных задач - 1,

справочной, условно постоянной информации (файл инициализации) - 1;

Количество разновидностей форм выходной информации - 2,

в том числе:

печатных документов (временные диаграммы) - 1,

информации, наносимой на магнитные носители (файл инициализации) - 1;

Степень новизны комплекса задач - Г (разработка программной продукции, основанной на привязке типовых проектных решений).

Сложность алгоритма - 3 (реализуются стандартные методы решения, не предусмотрено применение сложных численных и логических методов).

Вид используемой информации:

количество разновидностей форм переменной информации (ПИ) - 1, в том числе: информации, получаемой от решения смежных задач - 1;

количество разновидностей форм нормативно-справочной информации (НСИ) (файл инициализации) - 1;

Язык программирования - Borland С++.

Вид представления исходной информации - группа 11 (требуется учитывать взаимовлияние различных показателей).

Вид представления выходной информации - группа 22 (вывод информационных массивов на машинные носители).

Трудоемкость разработки программного продукта tпп может быть определена как сумма величин трудоемкостей выполнения отдельных стадий разработки программного продукта.

tпп = tтз + tэп + tтп + tрп + tв,

где tтз - трудоемкость разработки технического задания на создание программного продукта,

tэп - трудоемкость разработки эскизного проекта программного продукта,

tтп - трудоемкость разработки технического проекта программного продукта,

tрп - трудоемкость разработки рабочего проекта программного продукта,

tв - трудоемкость внедрения программного продукта.

Трудоемкость разработки технического задания рассчитывается по формуле

tтз = Тзрз + Тзрп,

где Тзрз - затраты времени разработчика постановки задач на разработку ТЗ, чел.-дни,

Тзрп - затраты времени разработчика программного обеспечения на разработку ТЗ, чел.-дни.

Значения Тзрз и Тзрп рассчитываются по формуле

Тзрз = tзКзрз, Тзрп = tзКзрп,

где tз - норма времени на разработку ТЗ для программного продукта в зависимости от функционального назначения и степени новизны разрабатываемового программного продукта, чел.-дни (tз = 29),