Смекни!
smekni.com

Мониторинг и прогнозирование геофизических процессов (стр. 16 из 17)

Исследуя следы смерча в районе турбазы “Лунево”, А.М.Лукьяненко - житель г.Волгореченска, сделал интересное наблюдение. По заметил, что смерч двигался скачками длиной 1-2 км и оставлял после своего соприкосновения с землей площадки разрушений диаметром 500-1000 м. Эти площадки имели характерную форму. В центре площадки имелось центральное ядро диаметром 300-400 м, почти круглой формы, которое было хаотически завалено переломанными соснами. По периферии некоторых таких площадок смерч оставлял еще по несколько просек-коридоров длиной 300-400 м и шириной 50 м, которые направлены почти по касательной к окружности ядра. Здесь сосны повалены вдоль просек к ядру площадки. Судя по этим следам, воронка смерча диаметром 1 км опустилась на лес, ее нижняя кромка наткнулась на сосны и порвалась на пять кусков. Каждый из кусков под действием перепада давления внутри воронки и вне ее, сил инерции и сил торможения двигался по сворачивающейся спирали, прорубив в лесу 5 коридоров, обрывки воронки смешивались вблизи центра смерча и образовывали хаос из переломанных деревьев. По-видимому, образовывалось несколько воронок.

Ивановский смерч 1984 г. еще раз показал, что среди исследователей нет согласия не только в вопросе о скорости вращения воронки, но и о степени разряжения в ней. Почти все утверждают, что в воронке существует значительное разряжение вплоть до 0,3-0,6 от атмосферного давления, и поэтому смерч всасывает в себя подобно пылесосу все, что его окружает. Однако, многие возражают против этого. Основания для таких сомнений дает удивительное явление, которое очень часто сопровождает смерчи. Оно получило название “каскад”.

Каскад представляет собой облако или столб пыли водяных брызг у основания воронки смерчей. Он напоминает речные каскады, особенно когда состоит из пыли и обломков зданий. Первоначально название “каскад” было дано тем массам брызг, которые поднимаются вверх, иногда на высоту в несколько десятков метров, когда смерч касается поверхности акватории. Падая обратно в водоем, они действительно напоминают настоящие речные каскады. Позже это название было распространено на наземные смерчи, которые, касаясь поверхности земли, поднимают вверх массы пыли, сухих листьев и мелких обломков. Падая вниз, они похожи на настоящие каскады.

Каскад образуется почти каждым смерчем и представляет собой весьма частое явление. Тем не менее причина его не разгадана. Дело в том, что каскад создается восходящими потоками воздуха, которые идут вне воронки смерча. Изучение их, как впрочем и всего, что связано с телом смерча, исключительно трудно и просто опасно. Пока приходится ограничиваться только их описанием.

У известных смерчей в Небраске 1955 г. ширина одного каскада достигала 1100 м, высота - 260 м, а ширина воронки - всего 70 м. Ширина другого каскада была громадна - 1700 м, а воронки - лишь 220 м. Подобной ширины каскад достигает редко. Каскад у водяного смерча на реке Янцзы, недалеко от Шанхая, отличался очень большой высотой - несколько сот метров при небольшой ширине. Он сужался у основания, а вверху расширялся, и вода падала обратно в реку. Сама воронка была длинной, узкой, столбообразной. При образовании таких высоких и узких каскадов вокруг воронки возникают дополнительные вихри, поднимающие брызги.

Спрашивается, о каком же разряжении внутри смерча может идти речь, если он не только не всасывает, но наоборот, отбрасывает от себя пыль, брызги и более крупные предметы?

До сих пор смерч не спешит раскрывать и другие свои тайны. Так, нет ответов на многие вопросы. Что представляет собой воронка смерча? Что придает ее стенкам сильное вращение и огромную разрушительную силу? Почему смерч устойчив?

Исследовать смерч не просто трудно, но и опасно - при непосредственном контакте он уничтожает не только измерительную аппаратуру, но и наблюдателя.

Сопоставляя описания смерчей (торнадо) прошлого и нынешнего столетий в России и других странах, которые мы из-за экономии места и времени в большинстве своем здесь не приводим, можно видеть, что они развиваются и живут по одинаковым законам, но эти законы до конца не выяснены и поведение смерча кажется непредсказуемым.

Во время прохождения смерчей естественно все прячутся, бегут, и людям не до наблюдений, а тем более измерений параметров смерчей. То немногое о внутреннем строении воронки, что удалось узнать, связано с тем, что смерч, отрываясь от земли, проходил над головами людей, и тогда можно было видеть, что смерч представляет собой огромный пустотелый цилиндр, ярко освещенный внутри блеском молний. Изнутри раздается оглушительный рев и жужжание. Считается, что скорость ветра в стенках смерча доходит до звуковой.

Немногочисленные статистические данные, которые известны о смерчах, сведены в табл. 5.

Ориентировочные параметры смерчей

Таблица 5

Измеряемая величина Минимальное значение Максимальное значение
Высота видимой части смерча 10-100 м 1,5-2 км
Диаметр у земли 1-10 м 1,5-2 км
Диаметр у облака 1 км 1,5-2 км
Линейная скорость стенок 20-30 м/с 100-300 м/с
Толщина стенок 3 м -
Пиковая мощность за 100 с 30 ГВт -
Длительность существования 1-10 мин 5 час.
Путь 10-100 м 500 км
Площадь разрушения 10-100 м2 400 км2
Максимальная масса поднятых предметов - 300 т
Скорость перемещения 0 150 км/ч
Давление внутри смерча < 0,4-0,5 атм -

Теория смерча была разработана на основании достоверного утверждения, что воронка смерча всегда приходит на землю сверху, а “ослабев”, вновь поднимается наверх. Значит вес воронки должен быть больше веса вытесненного ею воздуха, т.е. по закону Архимеда она будет “падать”. Тяжелее воздуха в атмосфере может быть только воздух, насыщенный водой и/или льдом. Поэтому правдоподобным будет предположение, что воронка смерча представляет собой вращающийся поток дождя и града, свернутый в спираль в виде относительно тонкой стенки. Содержание воды в стенках воронки должно по массе во много раз превосходить содержание там воздуха. Если плотность сухого воздуха составляет 1,3-1,4 кг/м3, то плотность воздуха, содержащего воду и лед внутри стенок смерча, может составлять 50 и более кг/м3.

Если воронка смерча обладает массивными стенками, то их вращение должно приводить к расширению воронки и понижению давления воздуха внутри нее из-за действия центробежных сил. Расширение воронки происходит до тех пор, пока перепад давления снаружи и внутри не уравновесит действия центробежных сил. Если выделить из стенки площадку S, то снаружи на нее будет действовать сила Dp×S. Равновесие с центробежными силами наступит при условии: Dp×S=mv2/R, где m - масса, приходящаяся на единицу площади стенки; v - скорость стенки; R - радиус воронки.

Приведенное, почти очевидное, условие равновесия стенки воронки приводит к ряду прямых следствий, которые естественно объясняют многие свойства смерчей.

Рассчитаем параметры смерча средней силы. Пусть он имеет диаметр 200 м, высоту Н=2 км, перепад давления Dp=0,5 атм. и скорость вращения стенки 145 м/с. Определим массу, приходящуюся на единицу площади стенки m: m=rст×Dlст . Плотность стенки можно считать примерно равной 50 кг/м3, эта плотность обеспечивает устойчивость стенок при заданном перепаде давления снаружи и внутри воронки. При толщине стенки 5 м m=250 кг/м2. Общая масса стенки смерча составит 300 тыс.т. Эта масса, вращаясь с заданной скоростью, обладает кинетической энергией W = Mv2/2 = 4,4×1012 Дж. При вращении смерч теряет энергию на трение об окружающий воздух. Сила трения Fтр.и мощность потерь Nтр. выразятся известными соотношениями:

Fтр.= h×S(v/d); Nтр.= Fтр.×v,

где h =1,7×10-5 кг/(м×с) - коэффициент вязкости воздуха; S - площадь соприкосновения слоев (в нашем случае S=6,28×105 м2); Dv/Dd - градиент скорости. Как отмечалось выше, на расстоянии 1-2 м от стенки смерча ветра не ощущается. Поэтому, приняв Dd=1 м и Dv=150 м/с, получим Dv/Dd =150 с-1, и мощность потерь составит Nтр.= 225 кВт. За одинчас потери на трение составят 0,8×108 Дж. Видно, что по сравнению с запасенной в стенках энергией эти потери ничтожны, и поэтому трение, по существу, не оказывает влияния на время жизни смерча, которое определяется иными энергетическими потерями. В частности, при опускании смерча вниз всего на 1 м/с он потеряет на образование каскада 2,2×109 Дж. и время его жизни без внешней подпитки составит 10-20 мин.

У смерчей, которые рождаются в море или идут по песку и пыли, условия для образования каскада особенно благоприятны, и поэтому они быстро расходуют свою энергию.

Рассмотрим поведение любого предмета, который попал в стенку воронки. Стенка увлекает предмет, и он, приобретая скорость v, начинает вращаться вместе со стенкой вокруг оси смерча по окружности радиусом R. Чтобы оно в дальнейшем осталось на этом радиусе, центробежные силы должны быть уравновешены перепадом давления в стенке. Для простоты рассмотрим тело площадью DS, толщиной Dd и плотностью rт. Тогда центробежная сила Fц выразится соотношением: Fц =(DSDdrтv2т)/R.