Смекни!
smekni.com

Пирокластические отложения андезитовых вулканов и диагностика их генетических типов (стр. 4 из 4)

Изучение микростроения образцов ненарушенного сложения пирокластических отложений показало, что образования тефры и волн пепловых облаков агрегированы, а приземных - нет [12]. Кроме этого, выяснилось, что агрегаты тефры более крупные по размерам, чем агрегаты волн пепловых облаков. Это еще одно доказательство факта, что отложения тефры и волн пепловых облаков действительно формируются из "пирокластических облаков". Тефра сепарируется из эруптивных туч, а отложения пирокластических волн пепловых облаков - из "волны пеплового облака" - промежуточного "слоя" между пирокластическим потоком и пепловыми облаками пирокластического потока, которые образуются в результате конвективной гравитационной дифференциации пирокластической массы при низвержении ее на склон вулкана в кульминационные фазы извержения. Таким образом, изучение микростроения образцов пирокластических отложений может существенно уточнять диагностику их генетических типов.

Уточняющим критерием определения генетических типов пирокластики может служить также вещественный состав (химический и минеральный) заполнителей отложений. Например, если содержание ювенильного вещества в заполнителе потоков может достигать 60-80 %, то в заполнителе агломерата взрыва оно очень мало - от первых до 10-15 % (см. табл.1). Наибольшим содержанием оксида кремния обладают породы тефры дальнего разноса, несколько меньшим - пеплы облаков потоков, состав других типов отложений (за исключением агломерата взрыва), в разной мере похож на состав обломков пород извержения вулкана [12]. Таким образом, с помощью изучения вещественного состава пород можно уточнять диагностику некоторых генетических типов пирокластических отложений вулканов.

Содержание "тяжелых" и "легких" минералов (по плотности твердой фазы) в заполнителях типов пирокластики различно. Это находит отражение в том, что плотности твердой фазы заполнителей типов отложений одного масштаба извержений вулкана хорошо различаются, хотя в среднем, за исключением пеплов облаков потоков, они похожи (см. табл.1).

Плотность естественного сложения недавно сформировавшейся пирокластики (в зависимости от масштаба извержения вулкана это время измеряется от нескольких дней до нескольких месяцев) различна для каждого из ее типов. Наименьшей плотностью сложения обладают отложения пепловых облаков пирокластических потоков (0,87-1,20 г/см3), наибольшей - образования песка направленного взрыва (1,50-1,77 г/см3) (см. табл.1).

Пористость отложений зависит, в основном, от их гранулометрического состава и плотности сложения в естественном залегании. Наибольшими показателями обладают отложения пепловых облаков потоков, наименьшими - породы пеплово-глыбовых пирокластических потоков.

Таким образом, комплексные - качественные и количественные - методы исследования пирокластических отложений андезитовых вулканов позволяют с достаточной степенью достоверности проводить диагностику их генетических типов.

Основными критериями определения генетических типов пирокластики являются: стратиграфический (залегание, протяженность, мощность отложений, границы с ниже- и вышележащими), структурно-текстурный (слоистость, количество и распределение обломков в заполнителе отложений).

Подтвердить и уточнить диагностику генетических типов пирокластики помогут критерии: гранулометрический состав заполнителей отложений (распределение фракций, наклон и местоположение кумулятивных кривых состава на графике, численные значения гранулометрических статистических коэффициентов), химический и минеральный составы пород (содержание кремнезема и других элементов, ювенильного вещества), физические свойства отложений (плотность твердой фазы, плотность естественного сложения, пористость).

Список литературы

Арамаки С. Пирокластические потоки и кальдеры Японии // Вулканизм островных дуг. М.: Наука. 1977. С. 164-172.

Асатуров М.Л., Будыко М.И., Винников К.Я. и др. Вулканы, стратосферный аэрозоль и климат Земли // Ленинград: Гидрометеоиздат, 1986. 256 с.

Башарина Л.А. Водные вытяжки пепла и газы пепловой тучи вулкана Безымянного // Бюлл. вулканол.ст. 1958. N 27. C. 38-42.

Богоявленская Г.Е., Брайцева О.А. О генетической классификации пирокластических отложений и типах отложений извержения вулкана Безымянный 1955-1956 гг. // Вулканология и сейсмология. 1988. N 3. С. 39-55.

Брайцева О.А., Кирьянов В.Ю. О прошлой активности вулкана Безымянный по данным тефрохронологических исследований // Вулканология и сейсмология. 1982. N 6. С. 44-55.

Брайцева О.А., Мелекесцев И.В., Богоявленская Г.Е. и др. Вулкан Безымянный: история формирования и динамика активности // Вулканология и сейсмология. 1990. N 2. С. 3-22.

Брайцева О.А., Мелекесцев И.В., Пономарева В.В. Возрастное расчленение голоценовых образований Толбачинского дола // Геологические и геофизические данные о Большом трещинном Толбачинском извержении 1975-1976 гг. М.: Наука, 1978. С. 64-72.

Брайцева О.А., Мелекесцев И.В., Флеров Г.Б. и др. Голоценовый вулканизм Толбачинской региональной зоны шлаковых конусов // Большое трещинное Толбачинское извержение. Камчатка. 1975-76 гг. М.: Наука, 1984. С. 177-209.

Будыко М.И., Голицын Г.С., Израэль Ю.А. Глобальные климатические катастрофы. М.: Гидрометеоиздат, 1986. 160 с.

Гирина О.А. Пирокластические образования вулкана Безымянный извержений 1984-1989 гг. // Вулканология и сейсмология. 1993. N 4. C. 88-97.

Гирина О.А. Пирокластические отложения извержения вулкана Безымянный в октябре 1984 г. // Вулканология и сейсмология. 1990. N 3. С. 82-91.

Гирина О.А. Пирокластические отложения современных извержений андезитовых вулканов Камчатки и их инженерно-геологические особенности // Владивосток: Дальнаука, 1998. 174 с.

Горшков Г.С. Извержение сопки Безымянной // Бюлл. вулканол. ст. 1957. N 26. С. 19-72.

Горшков Г.С., Богоявленская Г.Е. Вулкан Безымянный и особенности его последнего извержения 1955-1963 гг. М.: Наука, 1965. 172 с.

Горшков Г.С. К вопросу о классификации некоторых типов взрывных извержений // Проблемы вулканизма. Ереван: Изд-во АН АрССР, 1959. С. 55-60.

Горшков Г.С. Направленные вулканические взрывы // Геология и геофизика. 1963. N 12. С. 140-143.

Гущенко И.И. Реконструкция пирокластических ареальных отложений (тефры) // Вулканология и сейсмология. 1986. N 4. С. 17-33.

Дубик Ю.М., Меняйлов И.А. Новый этап эруптивной деятельности вулкана Безымянный // Вулканы и извержения. М.: Наука, 1969. С. 38-77.

Кирьянов В.Ю. Гравитационная эоловая дифференциация пеплов вулкана Шивелуч (Камчатка) // Вулканология и сейсмология. 1983. N 6. С.30-39.

Кирьянов В.Ю., Рожков Г.Ф. Гранулометрический состав тефры крупнейших эксплозивных извержений вулканов Камчатки в голоцене // Вулканология и сейсмология. 1989. N 3. С. 16-29.

Макдональд Г. Вулканы. М.: Мир, 1975. 432 с.

Мелекесцев И.В. Вулканизм и рельефообразование. М.: Наука, 1980. 212 с.

Banks N.G. and Hoblitt R.P. Summarie of 1980 deposits // The 1980 eruptions of Mount St. Helens. Washington . U.S. Geol. Survey Prof. Paper. 1981. P. 295-313.

Fenner C.N. The origin and mode of emplacement of the great tuff deposit in the Valley of Ten Thousand Smokes // Nation. Geogr. Soc., Contrib.Tech.Papers, Katmai Ser. 1923. N 1. P. 1-74.

Ficher R.V. Models for pyroclastic surges and pyroclastic flows // J.Volcanol. Geotherm. Res. 1979. V 6. P. 305-31

Fisher R.V. and Heiken G. Mt.Pelee, Martinique. May 8 and 20, 1902 pyroclastic flows and surges // J. Volcanol. Geotherm. Res. 1982. 13. P. 339-371.

Fisher R.V. and Schminke H.U. Pyroclastic rocks // Springer -Verlag. Berlin, Heidelberg, New York, Tokyo. 1984. 472 p.

Lacroix A. La Montagne Pelee et ses eruptions // Masson et Cie, Paris. 1904. P. 1-662.

Miller T.P. and Smith R.L. Spectacular mobility of ash Hows aboung Aniakchak and Fisher calderas, Alaska // Geologi. 1977. V. 5. P. 173-176.

Perret F.A. The eruption of Mt. Pelee 1929-1930 // Carnegie Inst. Washington Publ. 1937. V. 458. P. 126.

Sigurdsson M., Carey S.N., Fisher R.V. The 1982 eruptions of El Chichon volcano, Mexico. Physical Properties of Pyroclastic Surges // Bull.Volcanol. 1987. V.49. P. 467-488.

Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H. and Stix J. Encyclopedia of Volcanoes // Academic press. San Diego, San Francisko, New York, Boston, London, Sydney, Toronto. 2000.

Sparks R.S.I., Walker G.P.L. The ground surge deposit - a third type of pyroclastic rock // Nature. Physical Science. 1973. V. 241. P. 62-64.

Sparks R.S.J. Gas release rates from pyroclastic flows: An assessment of the role of fluidization in their emplacement // Bull. Volcanol. 1979. V. 41. P. 1-9.

Sparks R.S.J. Grain size variation in ignimbrites and implications for the transport of pyroclastic flows // Sedimentology. 1976. V. 23. P. 147-188.

Sparks R.S.L., Wilson L. A model for the formation of ignimbrite by gravitational column collapse // J.Geol. Soc.London. 1976. V. 132. P. 441-451.

Thorarinsson S. Laxargliufur and Laxarhraun, a tephrochronological study // Mus.Nat.Hist. Reykjavik. 1951. P. 2-88.

Wilson L. Explosive volcanic eruptions. 111 Plinian eruption columns // Geophys. J. R. Soc. 1976. V.45. P. 543-556.

Wilson C.J.N., Walker G.P.L. Ignimbrite depositional facies: the anatomy of a pyroclastic flow // J.Gtol.Soc. London, 1982. V. 139. P. 581-592.

Wright J.V., Smith A.L., Self S. A working terminology of pyroclastic deposits // J.Volcanol. Geotherm. Res. 1980. V. 8. P. 315-336.

Wright J.V., Smith A.L., Self S.A. A terminology for pyroclastic deposits // Tephra studies Reidel Publ.Co., Dordrecht. Holland, 1981. P. 457-463.