Смекни!
smekni.com

Происхождение и основные свойства воды и атмосферы (стр. 3 из 3)

Когда температура воды увеличивается, энергия молекул также возрастает, и они оказываются в состоянии разорвать водородные связи и отделиться от образованных групп. После этого молекулы располагаются между группами и, следовательно, занимают меньше места, что приводит к увеличению плотности воды. Создается впечатление, что баланс между этим эффектом и нормальным расширением вещества, которое происходит с увеличением температуры, достигается в пресной воде при 4°С. Ниже 4°С превалирует этот эффект, а при температуре выше 4°С основную роль играет обычное термическое расширение. Точно так же уменьшение вязкости с увеличением давления при низких температурах означает, что вода при этих температурах обладает структурой, которая препятствует течению, но которую можно разрушить, повышая давление.

Вода - весьма эффективный растворитель, и это ее свойство, по крайней мере, частично, можно объяснить присутствием электрических зарядов на молекулах воды. Имеющиеся в растворе отдельные ионы, например в растворе хлористого натрия катион натрия Na + или анион C1- , притягивают противоположные заряды молекул воды. Однако это разрушает структуру воды и изменяет некоторые ее физические свойства: точка замерзания понижается (данное свойство используется тогда, когда обледенелые дороги, чтобы растаял лед, посыпают солью), меньше становится и температура, при которой достигается максимальная плотность.

Когда содержание солей в воде достигает примерно 25 г/кг, температура воды максимальной плотности и точка замерзания совпадают в области около — 1,3°С. Если же содержание солей в воде еще выше (например, в океане), плотность воды будет возрастать с уменьшением температуры, пока не достигнет точки замерзания.

Другими особыми и весьма важными свойствами воды являются высокие величины ее поверхностного натяжения, удельной теплоемкости и скрытой теплоты плавления и кипения.

Поверхностное натяжение измеряется силой, необходимой, чтобы разорвать поверхность жидкости. Она обусловливается силами сцепления между молекулами жидкости, и нет ничего удивительного в том, что для воды эта сила сравнительно велика. Есть только одно вещество, которое, находясь в жидком состоянии при температуре поверхности Земли, обладает более высоким поверхностным натяжением, чем вода: это ртуть. Поверхностное натяжение воды - важное свойство, приводящее к образованию капель в атмосфере и очень маленьких капиллярных волн на поверхности океана, а также к капиллярному переносу воды в почвах и тканях живых организмов.

Высокие удельная теплоемкость и скрытая теплота плавления воды жизненно важны для сохранения тепловой энергии и предотвращения сильных колебаний температуры. Удельная теплоемкость воды, которая определяется количеством тепла, необходимого для увеличения температуры единицы ее массы на один градус Цельсия, наиболее высока среди всех твердых и жидких веществ, за исключением аммиака. Большая часть этой тепловой энергии заключена в связях между соседними молекулами воды, которые можно образно представить себе в виде упругих нитей, связывающих молекулы. Чем больше энергии будет сообщено воде, тем сильнее будет колебание молекул и температура будет подниматься. Однако эти колебания сильно ограничены действием нитей. В конце концов молекулы могут совершенно разорвать существующие между ними связи и перейти из жидкого состояния в газообразное, то есть в водяной пар.

Чтобы совершенно разорвать нити связей, требуется, однако, очень большая энергия: при 20° С одной и той же энергии достаточно, чтобы либо увеличить температуру 585 кг воды на 1°С или же чтобы испарить 1 кг воды. У воды скрытая теплота испарения выше, чем у какого-либо другого вещества. Если водяной пар перейдет в жидкое состояние, его скрытая теплота высвободится. Чтобы вода замерзла и стала льдом, она должна потерять все тепло, тогда молекулы будут обладать значительно меньшей энергией и будут располагаться в виде упорядоченной решетчатой структуры льда. Поскольку между соседними молекулами существуют связи, как в жидкой фазе, так и в фазе льда, в этот переход вовлекается меньше скрытой теплоты, чем при переходе воды из жидкого состояния в пар. Количество тепла, которое необходимо, чтобы растопить 1 кг льда, могло бы поднять температуру 80 кг воды на 1°С. Это также больше, чем для какого бы то ни было другого вещества, за исключением аммиака.


Литература

1.Хильми Г.Ф. Основы физики биосферы. – Л., 1989

2.Роджер Г. Барри. Погода и климат в горах. – Л., 1984

4.Дювиньо П., Танг М. Биосфера и место в ней человека. – М., 2002

5.Гвоздецкий Н.А. Основные проблемы физической географии. – М., 1989