Смекни!
smekni.com

Нечеткая логика в процессе моделирования (стр. 2 из 5)

В теории нечетких множеств разработан общий подход к выполнению операторов пересечения, объединения и дополнения, реализованный треугольных нормах и конормах. Приведенные выше реализации операций пересечения и объединения – наиболее распространенные случаи t-нормы и t-конормы.

Для описания нечетких множеств используются понятия нечеткой и лингвистической переменных.

Нечеткая переменная описывается набором (N,X,A), где N – это название переменной, X – универсальное множество (область рассуждений), A – нечеткое множество на X.

Значениями лингвистической переменной могут быть нечеткие переменные, т.е. лингвистическая переменная находится на более высоком уровне, чем нечеткая переменная. Каждая лингвистическая переменная состоит из:

·названия;

·множества своих значений, которое также называется базовым терм-множеством T. Элементы базового терма-множества представляют собой названия нечетких переменных;

·универсального множества X;

·синтаксического правила G, по которому генерируются новые термы с применением слов естественного или формального языка;

·семантического правила P, которое каждому значению лингвистической переменной ставит в соответствие нечеткое подмножество множества X.

Рассмотрим нечеткое понятие как "Цена акции". Это есть название лингвистической переменной. Сформируем для нее базовое терм-множество, которое будет состоять из трех нечетких переменных: "Низкая", "Умеренная", "Высокая" и зададим область рассуждений в виде X=[100;200] (единиц). Затем построим функцию принадлежности для каждого лингвистического терма из базового терм-множества T.

1.3. Формы задания функций принадлежности

Существует свыше десятка типовых форм кривых для задания функций принадлежности. Наибольшее распространение получили: треугольная, трапецеидальная и гауссова функции принадлежности.

Треугольная функция принадлежности (в соответствии с рисунком 3) определяется тройкой чисел (a, b, c), и ее значение в точке x вычисляется согласно выражению:

При (b-a)=(c-b) имеем случай симметричной треугольной функции принадлежности, которая может быть однозначно задана двумя параметрами из тройки (a, b, c).

Аналогично для задания трапецеидальной функции принадлежности необходима четверка чисел (a, b, c, d):

При (b-a)=(d-c) трапецеидальная функция принадлежности принимает симметричный вид.


Рисунок 3. Типовые кусочно-линейные функции принадлежности.

Функция принадлежности гауссова типа (в соответствии с рисунком 4) описывается формулой

и оперирует двумя параметрами. Параметр c обозначает центр нечеткого множества, а параметр σ отвечает за крутизну функции.


Рисунок 4. Гауссова функция принадлежности.

Совокупность функций принадлежности для каждого терма из базового терм-множества T обычно изображаются вместе на одном графике. На рисунке 5 приведен пример описанной выше лингвистической переменной "Цена акции", на рисунке 6 – формализация неточного понятия "Возраст человека". Так, для человека 48 лет степень принадлежности к множеству "Молодой" равна 0, "Средний" – 0,47, "Выше среднего" – 0,20.


Рисунок 5. Описание лингвистической переменной "Цена акции".


Рисунок 6. Описание лингвистической переменной "Возраст".

Количество термов в лингвистической переменной редко превышает 7.

1.4.Нечеткий логический вывод

Основой для проведения операции нечеткого логического вывода является база правил, содержащая нечеткие высказывания в форме "Если-то" и функции принадлежности для соответствующих лингвистических термов. При этом должны соблюдаться следующие условия:

1.Существует хотя бы одно правило для каждого лингвистического терма выходной переменной.

2.Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).

В противном случае имеет место неполная база нечетких правил.

Пусть в базе правил имеется m правил вида:

Результатом нечеткого вывода является четкое значение переменной

на основе заданных четких значений
.

В общем случае механизм логического вывода включает четыре этапа (в соответствии с рисунком 7): введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация.


Рисунок 7. Система нечеткого логического вывода.

Алгоритмы нечеткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.

Рассмотрим подробнее нечеткий вывод на примере механизма Мамдани. Это наиболее распространенный способ логического вывода в нечетких системах. В нем используется минимаксная композиция нечетких множеств. Данный механизм включает в себя следующую последовательность действий.

1.Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как

2. Нечеткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:

Далее находятся "усеченные" функции принадлежности:

3. Композиция, или объединение полученных усеченных функций, для чего используется максимальная композиция нечетких множеств:

где MF(y) – функция принадлежности итогового нечеткого множества.

4. Дефазификация, или приведение к четкости. Существует несколько методов дефазификации. Например, метод среднего центра, или центроидный метод:

Геометрический смысл такого значения – центр тяжести для кривой MF(y). Рисунок 8 графически показывает процесс нечеткого вывода по Мамдани для двух входных переменных и двух нечетких правил R1 и R2.


Рисунок 8. Схема нечеткого вывода по Мамдани.

1.5.Гибридные методы объединения

В результате объединения нескольких технологий искусственного интеллекта появился специальный термин – "мягкие вычисления", который ввел Л. Заде в 1994 году. В настоящее время мягкие вычисления объединяют такие области как: нечеткая логика, искусственные нейронные сети, вероятностные рассуждения и эволюционные алгоритмы. Они дополняют друг друга и используются в различных комбинациях для создания гибридных интеллектуальных систем.

Ниже приведены примеры таких объединений.

Нечеткие нейронные сети. Такие сети осуществляют выводы на основе аппарата нечеткой логики, однако параметры функций принадлежности настраиваются с использованием алгоритмов обучения нейронных сетей. Поэтому для подбора параметров таких сетей применим метод обратного распространения ошибки, изначально предложенный для обучения многослойного персептрона. Для этого модуль нечеткого управления представляется в форме многослойной сети. Нечеткая нейронная сеть, как правило, состоит из четырех слоев: слоя фазификации входных переменных, слоя агрегирования значений активации условия, слоя агрегирования нечетких правил и выходного слоя.

Адаптивные нечеткие системы. Классические нечеткие системы обладают тем недостатком, что для формулирования правил и функций принадлежности необходимо привлекать экспертов той или иной предметной области, что не всегда удается обеспечить. Адаптивные нечеткие системы решают эту проблему. В таких системах подбор параметров нечеткой системы производится в процессе обучения на экспериментальных данных. Алгоритмы обучения адаптивных нечетких систем относительно трудоемки и сложны по сравнению с алгоритмами обучения нейронных сетей, и, как правило, состоят из двух стадий:

1. Генерация лингвистических правил;

2. Корректировка функций принадлежности.