Смекни!
smekni.com

Изучение функций в курсе математики VII-VIII классов (стр. 1 из 6)

Изучение функций в курсе математики VII-VIII классов

Курсовая работа по теории и методике обучения математике на тему

Выполнила студентка группы Мз-401 Барейчева Л.В.

Федеральное агентство по образованию

Тольяттинский государственный университет

Кафедра алгебры и геометрии

Tольятти 2005 г.

Введение

Данная курсовая работа посвящена изучению функций в курсе математики VII-VIII классов. В ней даётся исторический экскурс определения понятия функции, рассматриваются различные подходы к введению понятия функции в школе. Отдельно рассматриваются общие вопросы методики введения понятий: независимой и зависимой переменной, функциональной зависимости, аргумента, функции, области определения функции. Приводятся примеры.

Основная часть курсовой работы направлена на рассмотрение вопросов методики изучения в VII-VIII классах школьного курса математики функций, образующих классы, которые обладают общностью аналитического способа задания функций, сходными особенностями графиков, областей применения. Освоение индивидуально заданной функции происходит в сопоставлении черт, специфических для неё, с общим представлением о функции. Особое внимание уделено методике изучения линейной, квадратичной и кубической функций и их графиков, а также рассматриваются понятия обратной функции и функции вида y=√¯x.

Определение функции

Начиная с XVII в. одним из важнейших понятий является понятие функции. Оно сыграло и поныне играет большую роль в познании реального мира.

Идея функциональной зависимости восходит к древности, она содержится уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами, в первых формулах для нахождения площади и объема тех или иных фигур.

Те вавилонские ученые, которые 4-5 тысяч лет назад нашли для площади S круга радиусом r формулу S=3r2 (грубо приближенную), тем самым установили, пусть и не сознательно, что площадь круга является функцией от его радиуса. Таблицы квадратов и кубов чисел, также применявшиеся вавилонянами, представляют собой задания функции.

Однако явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берут свое начало в XVII в. в связи с проникновением в математику идеи переменных. В “Геометрии” Декарта и в работах Ферма, Ньютона и Лейбница понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых - функции от абсцисс (х); путь и скорость - функции от времени (t) и тому подобное.

Четкого представления понятия функции в XVII в. еще не было, путь к первому такому определению проложил Декарт, который систематически рассматривал в своей “Геометрии” лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Постепенно понятие функции стало отождествляться таким образом с понятием аналитического выражения - формулы.

Слово “функция” (от латинского functio - совершение, выполнение) Лейбниц употреблял с 1673 г. в смысле роли (величина, выполняющая ту или иную функцию). Как термин в нашем смысле выражение “функция от х” стало употребляться Лейбницем и И. Бернулли; начиная с 1698 г. Лейбниц ввел также термины “переменная” и “константа” (постоянная). Для обозначения произвольной функции от х Иоганн Бернулли применял знак j х, называя j характеристикой функции, а также буквы х или e; Лейбниц употреблял х1, х2 вместо современных f1(x), f2(x). Эйлер обозначал через f : х, f : (x + y) то, что мы ныне обозначаем через f (x), f (x + y). Наряду с j Эйлер предлагает пользоваться и буквами F, Y и прочими. Даламбер делает шаг вперед на пути к современным обозначениям, отбрасывая эйлерово двоеточие; он пишет, например, j t, j (t + s).

Явное определение функции было впервые дано в 1718 г. одним из учеников и сотрудников Лейбница, выдающимся швейцарским математиком Иоганном Бернулли: “Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных”.

Леонард Эйлер во “Введении в анализ бесконечных” (1748) примыкает к определению своего учителя И. Бернулли, несколько уточняя его. Определение Л. Эйлера гласит: “Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств”. Так понимали функцию на протяжении почти всего XVIII в. Даламбер, Лагранж и другие видные математики. Что касается Эйлера, то он не всегда придерживался этого определения; в его работах понятие функции подвергалось дальнейшему развитию в соответствии с запросами математической науки. В некоторых своих произведениях Л. Эйлер придает более широкий смысл функции, понимая ее как кривую, начертанную “свободным влечением руки”. В связи с таким взглядом Л. Эйлера на функцию между ним и его современниками, в первую очередь его постоянным соперником, крупным французским математиком Даламбером, возникла большая полемика вокруг вопроса о возможности аналитического выражения произвольной кривой и о том, какое из двух понятий (кривая или формула) следует считать более широким. Так возник знаменитый спор, связанный с исследованием колебаний струны.

В “Дифференциальном исчислении”, вышедшем в свет в 1755 г, Л. Эйлер дает общее определение функции: “Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых”. “Это наименование, - продолжает далее Эйлер, - имеет чрезвычайно широкий характер; оно охватывает все способы, какими одно количество определяется с помощью других”. На основе этого определения Эйлера французский математик С. Ф. Лакруа в своем “Трактате по дифференциальному и интегральному исчислению”, опубликованном в 1797 г., смог записать следующее: “Всякое количество, значение которого зависит от одного или многих других количеств, называется функцией этих последних независимо от того, известно или нет, какие операции нужно применить, чтобы перейти от них к первому”.

Как видно из этих определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики в XIX в. вызвали и дальнейшее обобщение понятия функции.

Большой вклад в решение спора Эйлера, Даламбера, Д. Бернулли и других ученых XVIII в. по поводу того, что следует понимать под функцией, внес французский математик Жан Батист Жозеф Фурье (1768-1830), занимавшийся в основном математической физикой. В представленных им в Парижскую Академию наук в 1807 и 1811 гг., работах по теории распространения тепла в твердом теле Фурье привел и первые примеры функций, которые заданы на различных участках различными аналитическими выражениями.

Из трудов Фурье явствовало, что любая кривая независимо от того, из скольких и каких разнородных частей она составлена, может быть представлена в виде единого аналитического выражения и что имеются также прерывные кривые, изображаемые аналитическим выражением. В своем “Курсе алгебраического анализа”, опубликованном в 1821 г., французский математик О. Коши обосновал выводы Фурье. Таким образом, на известном этапе развития физики и математики стало ясно, что приходится пользоваться и такими функциями, для определения которых очень сложно или даже невозможно ограничиться одним лишь аналитическим аппаратом. Последний стал тормозить требуемое математикой и естествознанием расширение понятия функции.

В 1834 г. в работе “Об исчезании тригонометрических строк” Н. И. Лобачевский, развивая вышеупомянутое эйлеровское определение функции в 1755 г., писал: “Общее понятие требует, чтобы функцией от х называть число, которое дается для каждого х и вместе с х постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них; или, наконец, зависимость может существовать и оставаться неизвестной... Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа, одни с другими в связи, принимать как бы данными вместе”.

Еще до Лобачевского аналогичная точка зрения на понятие функции была высказана чешским математиком Б. Больцано. В 1837 г. немецкий математик П. Лежен-Дирихле так сформулировал общее определение понятия функции: “у есть функция переменной х (на отрезке a £ х £ b), если каждому значению х (на этом отрезке) соответствует совершенно определенное значение у, причем безразлично, каким образом установлено это соответствие - аналитической формулой, графиком, таблицей либо даже просто словами”.

Таким образом, примерно в середине XIX в. после длительной борьбы мнений понятие функции освободилось от уз аналитического выражения, от единовластия математической формулы. Главный упор в новом общем определении понятия функции делается на идею соответствия.

Во второй половине XIX в. после создания теории множеств в понятие функции, помимо идеи соответствия, была включена и идея множества. Таким образом, в полном своем объеме общее определение понятия функции формулируется следующим образом: если каждому элементу х множества А поставлен в соответствие некоторый определенный элемент у множества В, то говорят, что на множестве А задана функция у = f (х), или что множество А отображено на множество В. В первом случае элементы х множества А называют значениями аргумента, а элементы у множества В - значениями функции; во втором случае х - прообразы, у - образы. В современном смысле рассматривают функции, определенные для множества значений х, которые, возможно, и не заполняют отрезка a £ x £ b, о котором говорится в определении Дирихле. Достаточно указать, например, на функцию-факториал y = n !, заданную на множестве натуральных чисел. Общее понятие функции применимо, конечно, не только к величинам и числам, но и к другим математическим объектам, например к геометрическим фигурам. При любом геометрическом преобразовании (отображении) мы имеем дело с функцией.