Смекни!
smekni.com

Электрический ток в неметаллах (стр. 4 из 4)

Триод состоит из:

Сетка

Анод

Катод

Подогрев.

Сетка всегда заряжена отрицательно и ставится ближе к катоду, так чтобы при малых напряжениях на сетке поле между катодом и сеткой было достаточно большим.

На сетку можно подать такое напряжение, что ни один электрон не пройдет до анода. Такое напряжение называется запирающим. С уменьшением напряжения на сетке ток в лампе возрастает. Если на сетке «0», в лампе возникает ток насыщения. Напряжение на сетке регулируют при помощи сигнала. При не больших изменениях напряжения на сетке сильно изменяется ток в лампе. Чтобы снять с лампы большое напряжение ставится нагрузочное сопротивление – резистор.

По закону Ома:U
=I
Лампа увеличивает напряжение примерна в 100 раз. Применяется в качестве усилителя.
Сетка всегда должна быть заряжена отрицательно или произойдет искажение сигнала.

4.2. Фотоэлектрическая эмиссия

Явление внешнего фотоэффекта состоит в испускании (эмиссии) электронов с поверхности тела под действием света; для этого явления экспериментально установленные зависимости объединяются квантовой теорией света. Свет есть поток квантов; кванты света, попадая в вещество, поглощаются им; избыточная
энергия передается электронами, которые получают возможность покинуть это вещество - конечно, если энергия кванта больше, чем работы выхода электрона (см. "Электронная эмиссия"). Заметим, что квантовый характер света проявляющийся в явлении фотоэффекта, не следует понимать как отрицание волновых свойств света; свет есть и поток квантов, и электромагнитная волна - просто в зависимости от конкретного явления проявляются или квантовые, или волновые свойства. На основе внешнего фотоэффекта создан ряд фотоэлектронных приборов (фотоэлементы различного назначения, фото катоды, фото умножители и т.д.). Внешний фотоэффект играет большую роль в развитии электрических зарядов; фотоэффект в газах определяет распространение электрического заряда в газах при больших давлениях обуславливая высокую скорость распространения стримерной формы разряда

4.3. Вторичная электрическая эмиссия

Вторичная электронная эмиссия, испускание электронов поверхностью твёрдого тела при её бомбардировке электронами. Открыта в 1902 немецкими физиками Аустином и Г. Штарке. Электроны, бомбардирующие тело, называются первичными, испущенные - вторичными. Часть первичных электронов отражается телом без потери энергии (упруго отражённые первичные электроны), остальные - с потерями энергии (неупруго отражённые электроны), расходуемой в основном на возбуждение электронов твёрдого тела, переходящих на более высокие уровни энергии. Если их энергия и импульс оказываются достаточно большими для преодоления потенциального барьера на поверхности тела, то электроны покидают поверхность тела (истинно вторичные электроны). Все три группы электронов присутствуют в регистрируемом потоке вторичных электронов.

Количественно В. э. э. характеризуется коэффициентом В. э. э. σ = iвт/iп , где - iвт ток, образованный вторичными электронами, iп - ток первичных электронов, коэффициент упругого r = ir/iп и неупругого η = iη/iп отражения электронов, а также коэффициентом эмиссии истинно вторичных электронов δ = iδ/iп (ir, iη, iδ - токи, соответствующие упруго отражённым, неупруго отражённым и истинно вторичным электронам, iвт = ir + iδ + iδ).

Коэффициент σ, r, η и δ зависят как от энергии первичных электронов Eп и угла их падения, так и от химического состава, метода изготовления и состояния поверхности облучаемого образца. В металлах, где плотность электронов проводимости велика, образовавшиеся вторичные электроны имеют малую вероятность выйти наружу. В диэлектриках, где концентрация электронов проводимости мала, вероятность выхода вторичных электронов больше. Вместе с тем вероятность выхода электронов зависит от высоты потенциального барьера на поверхности. В результате у ряда неметаллических веществ (окислы щёлочноземельных металлов, щелочно-галоидные соединения) σ > 1. У специально изготовленных эффективных эмиттеров (интерметаллические соединения типа сурьмяно-щелочных металлов, специальным образом активированные сплавы CuAlMg, AgAlMg, AgAlMgZi и др.) s 1. У металлов же и собственных полупроводников значение сравнительно невелико. У углерода (сажи) и окислов переходных металлов σ < 1 ,и они могут применяться как анти эмиссионные покрытия.

4.4. Авто электрическая эмиссия

Автоэлектронная эмиссия - квантово-механическое явление. Ее эмиссионная способность в миллионы раз больше, чем у всех других известных видов эмиссии. Сейчас это явление переживает второе рождение в связи с его замечательными применениями в микроскопии, электронной голографии атомного разрешения, наноэлектронике.

Под электронной эмиссией понимается испускание электронов из твердого тела или какой-либо другой среды. Наибольший интерес представляет эмиссия электронов в вакуум. Тело, из которого испускаются электроны, называется катодом. Электроны не могут самопроизвольно покинуть поверхность катода, так как для этого надо совершить работу против внутренних сил, удерживающих их на границе раздела катод-вакуум. Таким образом, для того чтобы высвободить электроны из катода, необходимо затратить энергию. По способу, которым эта энергия передается катоду, эмиссионные процессы называются термоэмиссией, когда энергия передается электронам при нагревании катода за счет тепловых колебаний решетки; вторичной электронной эмиссией, когда эта энергия передается другими частицами (электронами или ионами, бомбардирующими катод); фотоэлектронной эмиссией, при которой электроны выбиваются квантами света, и т.п.

Автоэлектронной эмиссией называется явление испускания электронов в вакуум с поверхности твердого тела или другой среды под действием очень сильного электрического поля напряженностью F = 107-108 В/см. Для того чтобы создать такие сильные электрические поля, к обычным макроскопическим электродам необходимо было бы прикладывать напряжения в десятки миллионов вольт. Практически автоэлектронную эмиссию можно возбудить при гораздо меньших напряжениях, если придать катоду форму тонкого острия с радиусом вершины в десятые или сотые доли микрона. Сейчас реализованы условия, когда при микроскопических расстояниях катод-анод, равных единицам или долям микрона, и очень малых радиусах кривизны катода r = 20-50 Б (1 Б = 10- 8 см) авто эмиссию удается получать при напряжениях всего в сотни и даже десятки вольт. Среди эмиссионных явлений авто эмиссия занимает особое место, так как это чисто квантовый эффект, при котором для высвобождения электронов из катода не требуется затрат энергии на сам эмиссионный акт в отличие от термо-, фото- и вторичной эмиссии.

Работа против сил, удерживающих электрон внутри катода, обычно представляется в виде энергетической диаграммы. Совершение работы против удерживающих сил равнозначно тому, что электрону требуется преодолеть потенциальный барьер U, созданный этими силами. Основными силами, удерживающими электрон на поверхности катода, являются так называемые силы зеркального изображения, связанные с тем, что электрон, покидающий катод, поляризует электронный газ внутри твердого тела таким образом, как будто он создает внутри положительный заряд, равный по абсолютной величине заряду эмитированного электрона. Взаимодействие между этими зарядами осуществляется по закону Кулона.

Литература

1. Елинсон М.И., Васильев Г.Ф. Автоэлектронная эмиссия / Под ред. Д.В. Зернова. М.: Гос. изд. физ.-мат. лит., 1958. 272 с.

2. Модинос А. Авто-, термо- и вторично-электронная эмиссионная спектроскопия: Пер. с англ. / Под ред. Г.Н. Фурсея. М.: Наука, 1990. 320 с.

3. Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966

4. Фридрихов С.А., Мовнин С.М. Физические основы электронной техники: Учебник для вузов.- М.: Высшая школа, 1982.- 608 с.

5. Бажанова Н.П., Кораблев В.В., Кудинов Ю.А. Актуальные вопросы вторичноэмиссионной спектроскопии. Учебное пособие.- Л.: ЛПИ, 1985.- 88 с.

6. И. В. Савельев. Курс общей физики, т.3, М., Наука, 1979, с.213.

7. Р.Бьюб,Фотопроводимость твердых тел,М.,1962.

8. С.М.Рывкин, Фотоэлктрические явления в полупровод-
никах, М.,1963.