Смекни!
smekni.com

Геометрия в пространстве (стр. 1 из 6)


Введение.

В своей деятельности человеку повсюду приходится сталкиваться с необходимостью изучать форму, размеры, взаимное расположение пространственных фигур. Подобные задачи решают и астрономы, имеющие дело с самыми большими масштабами, и физики, исследующие структуру атомов и молекул. Раздел геометрии, в котором изучаются такие задачи, называется стереометрией (от греческого «стереос»- объемный, пространственный).

Может показаться парадоксальным, но фактически понятие «плоскость» в планиметрии- геометрии на плоскости - не нужно. Ведь если мы, например, говорим, что в плоскости многоугольника дана точка, мы тем самым подразумеваем, что такие точки существуют и вне этой плоскости. В планиметрии такое предположение излишние: все происходит в одной и той же единственной плоскости. В стереометрии нам приходится иметь дело уже с несколькими плоскостями. В каждой из них сохраняют свою силу все известные из планиметрии определения и теоремы, относящиеся к точкам, прямым, расстояниям и т.д., но свойства самих плоскостей необходимо описывать отдельно.

План.

I. Основные аксиомы стереометрии--------------- 4 II. Прямые, плоскости, параллельность------------ 6

III. Изображение пространственных фигур------ 7 IV. Перпендикулярность. Углы. Расстояния----- 12 V. Несколько задач на построение, воображение, изображение и соображение------------------------ 17

I.Основные аксиомы стереометрии

Итак, в стереометрии к основным понятиям планиметрии добавляется еще одно - плоскость, а вместе с ним - аксиомы, регулирующие «взаимоотношения» плоскостей с другими объектами геометрии. Таких аксиом три.

Первая- аксиома выхода в пространство - придает «театру геометрических действий» новое, третье измерение:

· Имеется четыре точки, не лежащие в одной плоскости (рис. 1)

Таким образом, не все точки находятся в одной плоскости. Но этого недостаточно. Нужно, чтобы различных плоскостей было бесконечно много. Это обеспечивается второй аксиомой- аксиомой плоскости:

· Через любые три точки проходит плоскость.

С третьей аксиомой мы сталкиваемся, когда складываем фигурки из бумаги: все знают, что, образующиеся при этом линии сгиба - прямые.

Аксиома пересечения плоскостей звучит так:

·

Если две плоскости имеют общую точку, то их пересечение есть прямая.

· (рис.2)

Отсюда следует: если три точки лежат на одной прямой, то проходящая через них плоскость единственная.

Действительно, если через какие- то три точки проходят две разные плоскости, то через эти точки можно провести прямую, а именно прямую, по которой плоскости пересекаются. Отметим, что последнее свойство само нередко включается в аксиомы.

Третья аксиома играет очень существенную и неочевидную с первого взгляда роль в стереометрии: она делает пространство в точности трехмерным, потому что в пространствах размерности четыре и выше плоскости могут пересекаться по одной точке. К трем указанным так же присоединяются планометрические аксиомы, переосмысленные и подправленные с учетом того, что теперь мы имеем дело не с одной, а с несколькими плоскостями. Например, аксиому прямой - через две различные точки можно провести одну и только одну прямую - переносят в стереометрию дословно, но только она уже распространяется на две точки пространства.

В качестве следствия выведем прямо из аксиом одно полезное следствие: прямая, имеющая с плоскостью хотя бы две общие точки, целиком лежит в этой плоскости.

Пусть прямая l проходит через точки А и В плоскости α(рис. 3). Вне плоскости α есть хотя бы одна точка С (по аксиоме выхода в пространство). В соответствии с аксиомой плоскости через А,В и С можно провести плоскостьβ. Она отлична от плоскости α, так как содержит С и имеет с α две общие точки. Значит,β пересекается сα по прямой, которой, как и l, принадлежат А, В. По аксиоме прямой, линия пересечения плоскостей совпадает с l. Но эта линия лежит в плоскости α, что и требовалось доказать.

Путем несложных доказательств мы находим, что:

· На каждой плоскости выполняются все утвержде-ния планиметрии.


II. Прямые, плоскости, параллельность.

Уже такое основное понятие, как параллель­ность прямых, нуждается в новом определении:

две прямые в пространстве называются парал-лельнылт, если они лежат в одной плоскости и не имеют общих точек. Так что не попадай­тесь в одну из излюбленных экзаменаторами ловушек — не пытайтесь «доказывать», что через две параллельные прямые можно про­вести плоскость: это верно по определению параллельности прямых! Знаменитую плани­метрическую аксиому о единственности парал­лельной включают и в аксиомы стереометрии, а с её помощью доказывают главное свойство параллельных прямых в пространстве:

· Через точку, не лежащую на прямой, можно провести одну и только одну прямую параллельно данной.

Сохраняется и другое важное свойство па­раллельных прямых, называемое транзитив­ностью параллельности:

· Если две прямые а и b параллельны третьей прямой с, то они параллель­ны друг другу.

Но доказать это свойство в стереометрии сложнее. На плоскости непараллельные прямые обязаны пересекаться и потому не могут быть одновременно параллельны третьей (иначе нарушается аксиома параллельных). В про­странстве существуют непараллельные и при­том непересекающиеся прямые — если они лежат в разных плоскостях. О таких прямых говорят, что они скрещиваются.

На рис. 4 изображён куб; прямые АВ и ВС пересекаются, АВ и CD — параллельны, а АВ и В¹С¹ — скрещиваются. В дальнейшем мы часто будем прибегать к помощи куба, чтобы иллюс­трировать понятия и факты стереометрии. Наш куб склеен из шести граней-квадратов. Исходя из этого, мы будем выводить и другие его свойства. Например, можно утверждать, что прямая АВ параллельна C¹D¹, потому что обе они параллельны общей стороне CD со­держащих их квадратов.
В стереометрии отношение параллельности рассматривается и для плоскостей: две пло­скости или прямая и плоскость параллельны, если они не имеют общих точек. Прямую и плоскость удобно считать параллельными и в том случае, когда лежит в плоскости. Для плоскостей и прямых справедливы теоремы о транзитивности:

· Если две плоскости параллельны третьей плоскости, то они параллельны между собой.