Задачи Лоповок (стр. 9 из 19)

91. Докажите, что площадь четырехугольника не больше произведения полу сумм длин противоположных сторон.

92. Около квадрата АВСВ описана окружность. Найдите на ней такую точку М, чтобы произведение МА • МВ • МС • МВ имело наибольшую возможную величину.

93. Площадь параллелограмма АВСВ равна О. Вершина М параллелограмма АМКВ делит ВС так, что ВМ : МС ===3:5. Найдите площадь общей части параллелограммов.

94. Площадь четырехугольника <?, длины его сторон а, Ь, с, <1, внешние углы ос., (3, у, 6 (рис. 44). Найдите (аЬ зш та + + Ьс аш р + сд. вш -у + а<1 зш 6) : О.

95. У выпуклого четырехугольника АВСВ стороны АВ и СВ равны и лежат на двух взаимно перпендикулярных прямых. Докажите, что его площадь в 4 раза меньше раз­ности квадратов сторон АТ) и ВС.

96. Площадь квадрата, построенного на гипотенузе прямо­угольного треугольника в 8 раз больше площади треугольника. Найдите градусные меры острых углов треугольника.

97. АВСВ — параллелограмм, М — середина АВ, К — сере­дина ВС; АК и ВМ пересекаются в точке О. Найдите отношение площадей треугольника АОВ и параллелограмма АВСВ.

98. Две высоты треугольника делят его на две пары равно­великих частей. Найдите величины углов треугольника.

99. Разность двух сторон треугольника равна разности высот, проведенных к этим сторонам. Докажите, что эти сторо­ны лежат против острых углов.

100. Площадь остроугольного треугольника равна О. Из середины каждой стороны опущены перпендикуляры на другие стороны. Найдите площадь шестиугольника, ограниченного этими перпендикулярами (рис. 45).

101. Существует ли равнобокая трапеция, которая делится своей диагональю на части с отношением периметров 1 : 2 и отношением площадей 1 : З?

102. Найдите площадь прямоугольного треугольника, у ко­торого наибольшая медиана имеет длину т и образует с боль­шим катетом угол в 15°.

103. Из точки М, находящейся внутри равностороннего треугольника, опущены перпендикуляры на его стороны. Зная, что длины перпендикуляров 1, 4 и 7 см, найдите площади полученных четырехугольников.

104. Высота АВ и медиана АЕ == т треугольника АВС об­разуют со стороной АВ углы по <х. Найдите площадь треугольни­ка АВС (рис. 46).

105. Длины сторон треугольника 30, 30, 36 см. Найдите расстояние между центрами вписанной и описанной окруж­ностей.

106. Докажите, что в прямоугольном треугольнике про­изведение радиуса вписанной окружности на радиус описанной

окружности больше -д- площади треугольника.

107. Окружность, вписанная в прямоугольный треугольник, делит гипотенузу на части а и Ъ. Докажите, что площадь тре­угольника 8 == аЬ.

108. Длины сторон треугольника в сантиметрах выражены последовательными целыми числами. Найдите длины его сторон, зная, что радиус вписанной окружности 4 см.

109. Длины сторон треугольника в сантиметрах выражают­ся последовательными натуральными числами. Найдите эти стороны, зная, что площадь треугольника равна 1170см2.

110. Три прямые параллельны. Средняя из них удалена от двух других на 4 и 7 см. Найдите площадь равностороннего треугольника, вершины которого лежат на этих трех прямых.

Площадь трапеции

111. Треугольник разделен на три трапеции, общей верши­ной которых является центр масс треугольника. Сравните площади названных трапеций.

112. Площадь квадрата, построенного на диагонали равнобокой трапеции, в 4 раза больше площади трапеции. Найдите угол между диагоналями трапеции.

113. Сумма площадей квадратов, построенных на диагона­лях трапеции, в 4 раза больше площади трапеции. Докажите, что диагонали этой трапеции взаимно перпендикулярны.

114. Основания трапеции ВС и АВ, диагонали пересекаются в точке О. Площади треугольников АВО и ВСО равны 50 и 20 см2. Найдите площадь трапеции.

115. Угол между диагоналями равнобокой трапеции равен 60° (два случая). Как разрезать эту трапецию на возможно меньшее число частей, из которых можно сложить равносторон­ний треугольник?

116. Диагонали равнобокой трапеции взаимно перпендику­лярны. Продолжения боковых сторон АВ и СВ пересекаются в точке М под углом в 30°. Зная, что площадь треугольника ВМС равна О, найдите площадь трапеции.

117. В полукруг радиуса 2 см вписана трапеция, периметр которой равен 10 см. Найдите площадь трапеции.

Площади подобных фигур

118. Площадь треугольника равна 8. Каждую его сторону продлили на своей длины в обе стороны. Найдите площадь шестиугольника, который получился, когда соединили концы указанных отрезков.

119. В равносторонний треугольник АВС вписали треуголь­ник ВЕР, стороны которого соответственно перпендикулярны сторонам треугольника АВС. Найдите отношение площадей треугольников ВЕР и АВС.

120. Площадь треугольника АВС равна 120 см2. Каждую его сторону разделили в отношении 1:2:1. Через точки деле­ния провели три прямые, которые отсекли от треугольника три треугольника (рис. 47). Определите площадь оставшегося шестиугольника.

121. На высотах ВК и ВМ ромба АВСВ построили ромб. Зная, что его площадь вдвое меньше площади ромба АВСВ, найдите величины углов ромба.

122. Гипотенуза прямоугольного треугольника равна 24 см. Прямая, параллельная наименьшей медиане, разделила тре­угольник на части, площади которых относятся, как 1 : 7. Найдите длину отрезка этой прямой, ограниченного сторонами треугольника.

123. В прямоугольный треугольник, две большие стороны которого 8 и 10 см, вписана окружность. Построив касательные к ней, соответственно параллельные сторонам треугольника, получили шестиугольник. Найдите его площадь.

124. Основания трапеции 7 и 17 см. Прямая, параллельная основаниям, разделила трапецию на равновеликие части. Най­дите длину отрезка прямой, ограниченного боковыми сторонами трапеции.

125. Через внутреннюю точку М треугольника АВС проведе­ны три прямые, соответственно параллельные сторонам тре­угольника АВС. Площади образовавшихся треугольников с вер­шиной М равный), иг, <5з Найдите площадь треугольника АВС.

Правильные многоугольники

126. На сколько областей делят плоскость прямые, на кото­рых лежат все стороны данного правильного: а) шестиугольни­ка; б) восьмиугольника?

127. Треугольник АВС — равносторонний. Вне его построе­ны квадраты АВВ&bsol;А&bsol;, АСС&bsol;Ач, ВССчВч. Прямые АА&bsol; и ССа, ВВ1 и СС&bsol;, АА-г и ВВг пересекаются в точках К, Ь, М (рис. 48). Докажите, что шестиугольник АКСЬВМ — правильный.

128. Постройте правильный шестиугольник с центром в дан­ной точке О, зная, что концы одной малой диагонали лежат на двух данных прямых.

129. Постройте правильный восьмиугольник, у которого центр находится в данной точке О, а концы двух апофем, про­веденных к смежным сторонам, находятся на данной окружно­сти и данной прямой.

130. Как изменится решение задачи 129, если концы назван­ных апофем лежат на данной окружности, центр которой не О?

131. На сторонах квадрата АВС^ вне его построены равно­сторонние треугольники АВК, ВСМ, СОР, ВАТ. Докажите, что середины отрезков КМ, МР, РТ, ТК, АК, ВК, ВМ, СМ, СР, ОР, ОТ, АТ являются вершинами правильного двенадцати­угольника.

132. Останется ли верным заключение задачи 131, если названные треугольники построены внутри квадрата?

133. Точка М находится в плоскости правильного шести­угольника АВСВЕР. Докажите, что можно построить шести­угольник, длины сторон которого равны расстояниям от точки М до вершин А, В, С, ^, Е, Р.

134. Известно, что некоторый пятиугольник имеет не менее двух осей симметрии. Является ли он правильным?

135. Выпуклый шестиугольник вписан в окружность и име­ет 3 оси симметрии. Является ли он правильным?

136. Выпуклый двенадцатиугольник вписан в окружность. Известно, что он имеет 3 оси симметрии. Является ли он пра­вильным?

137. Докажите следующие утверждения о разности диагона­лей правильного многоугольника А&bsol;АчАз..Ап'- а) при га = = 9 А&bsol;А^—А&bsol;Аг равна стороне многоугольника; б) при га = 18 А&bsol;Ад — А&bsol;Ач == А&bsol;А^.

138. Квадрат вписан в окружность. Через середины каждых двух смежных сторон квадрата построена прямая. Докажите, что точки пересечения этих прямых с окружностью и вершины квадрата являются вершинами правильного двенадцатиуголь­ника.

139. Прямая проходит через центр равностороннего тре­угольника АВС и пересекает сторону ВС. Под каким углом к ВС нужно строить эту прямую, чтобы ее отрезок, ограниченный двумя сторонами треугольника, имел наименьшую возможную длину?

140. Через центр квадрата проходят прямые. Докажите, что для всех этих прямых сумма квадратов их расстояний от вер­шин данного квадрата одинакова.

141. Останется ли верным утверждение задачи 140, если вместо квадрата дан равносторонний треугольник; правильный шестиугольник?

142. Отрезки, соединяющие середину каждой стороны квад­рата с концами параллельной стороны, ограничили выпуклый восьмиугольник (рис. 49). Является ли он правильным?

143. В треугольник вписан квадрат так, что две вершины его лежат на основании треугольника, а две — на боковых сторо­нах. Докажите, что сторона квадрата больше радиуса, но мень­ше диаметра окружности, вписанной в этот треугольник.

144. Постройте правильный шестиугольник с центром в дан­ной точке, зная, что концы одной из больших диагоналей шести­угольника лежат на данной прямой и на данной окружности.

145. Найдите точку, сумма квадратов расстояний от которой до всех вершин данного правильного многоугольника наимень­шая возможная.

146. а.п и Ьп — стороны вписанного и описанного правиль­ных многоугольников с числом сторон п. Докажите, что а|п =--^-а Ъ

— о ^п^п.

147. Впишите в данный правильный шестиугольник наи­больший возможный квадрат.

Площадь многоугольника