Смекни!
smekni.com

Великие задачи древности (стр. 1 из 2)

.

Реферат ученика 10 ф/м б класса Кожевникова Кирилла.

Февраль 2002 г.

С глубокой древности известны три задачи на построение: об удвоении куба, трисекции угла и квадратуре круга. Они сыграли особую роль в истории математики. В конце концов было доказано, что эти задачи невозможно решить, пользуясь только циркулем и линейкой. Но уже сама постановка задачи — «доказать неразрешимость» — была смелым шагом вперёд. Вместе с тем предлагалось множество решений при помощи нетрадиционных инструментов. Всё это привело к возникновению и развитию совершенно новых идей в геометрии и алгебре. Немало преуспели в нестандартных и различных приближённых решениях любители математики — среди них три знаменитые задачи древности особенно популярны. Задачи кажутся доступными любому: вводят в заблуждение их простые формулировки. До сих пор редакции математических журналов время от времени получают письма, авторы которых пытаются опровергнуть давно установленные истины и подробно излагают решение какой-либо из знаменитых задач с помощью циркуля и линейки.

КЛАССИЧЕСКИЕ ЗАДАЧИ ДРЕВНОСТИ

Древнегреческие математики достигли чрезвычайно большого искусства в геометрических построениях с помощью циркуля и линейки. Однако три задачи не поддавались их усилиям. Прошли тысячелетия, и только в наше время, наконец, были получены их решения.

История нахождения квадратуры круга длилась четыре тысячелетия, а сам термин стал синонимом неразрешимых задач. Как следует из подобия кругов, отношение длины окружности к ее диаметру есть величина постоянная, не зависящая от радиуса круга, она обозначается буквой п. Таким образом, длина окружности круга радиуса rравна 2pr2, а так как площадь круга равна S = 2pr2, то задача о квадратуре круга сводится к задаче построения треугольника с основанием 2pr2 и высотой r. Для него потом уже без труда может быть построен равновеликий квадрат.

Итак, задача сводилась к построению отрезка, длина которого равна длине окружности данного круга. Это было показано еще Архимедом в сочинении «Измерение круга», где он доказывает, что число p меньше чем

, но больше чем
,

т.е. 3,1408 < p < 3,1429.

В наши дни с помощью ЭВМ число p вычислено с точностью до миллиона знаков, что представляет скорее технический, чем научный интерес, потому что такая точность никому не нужна. Десяти знаков числа p (p =3,141592653...) вполне достаточно для всех практических целей. Долгое время в качестве приближенного значения я использовали число 22/7, хотя уже в V в. в Китае было найдено приближение 355/113 == 3,1415929..., которое было открыто вновь в Европе лишь в XVI в. В Древней Индии p считали равным

=3,1622.... Французский математик Ф. Виет вычислил в 1579 г. я с 9 знаками. Голландский математик Лудольф Ван Цейлен в 1596 г. публикует результат своего десятилетнего труда - число p,вычисленное с 32 знаками.

Но все эти уточнения значения числа л производились методами, указанными еще Архимедом: окружность заменялась многоугольником со все большим числом сторон (рис. 1,а). Периметр вписанного многоугольника при этом был меньше длины окружности, а периметр описанного многоугольника— больше. Но при этом оставалось неясным, является ли число p рациональным, т.е. отношением двух целых чисел, или иррациональным. Лишь в 1767 г. немецкий математик И. Г. Ламберт доказал, что число л иррационально, а еще через сто с лишним лет в 1882 г. другой немецкий математик— Ф. Линдеман доказал его трансцендентность, что означало и невозможность построения при помощи циркуля и линейки квадрата, равновеликого данному кругу.

Конечно, способов приближенного решения квадратуры круга с помощью циркуля и линейки было придумано великое множество. Так, в Древнем Египте было распространено правило: площадь круга равна площади квадрата со стороной, равной 8/9; p =256/81 = =3,1604....

Были найдены и другие пути определения квадратуры круга: кроме циркуля и линейки использовали другие инструменты или специально построенные кривые. Так, в V в. до н.э. греческий математик Гиппий из Элиды изобрел кривую, впоследствии получившую название квадратрисы Динострата (ее назвали по имени другого древнегреческого математика, жившего несколько позже и указавшего способ построения квадратуры круга при помощи этой кривой).

Чрезвычайно любопытно, что квадратриса Динострата решает и вторую из знаменитых задач древности- задачу о трисекции угла. Для этого нужно отложить данный угол так, чтобы его вершина находилась в точкеО, а одна из сторон совпала с лучом ОА. Из точки N пересечения квадратрисы со вторым лучом угла опускаем перпендикуляр NК на ОА, а затем делим отрезок KА на три равные части. Если восставить , в точках деления перпендикуляры к прямой ;

ОА до пересечения с квадратрисой , а затем соединить полученные точки пересечения l с точкой О, то полученные углы окажутся равными. Это следует из метода построения квадратрисы. Аналогичным образом можно делить любой угол на произвольное количество равных частей.

Напомним, что в классической постановке задачи о трисекции угла такое построение требовалось произвести лишь с помощью циркуля и линейки! В 1837 г. французский математик П. Ванцель доказал, что в общем виде задача не имеет решения, а возможно такое деление лишь в нескольких исключительных случаях, в частности для угла а = p/2 и всех углов вида p/2n.

Решение задачи сводится к уравнению х3 - Зх - а = 0. Оказалось, что трисекция угла возможна для тех углов a, для которых корни этого уравнения выражаются через параметр а и целые числа лишь с помощью операций сложения, вычитания, умножения, деления и извлечения квадратного корня.

К кубическому уравнению сводится и знаменитая «делосская задача» удвоения куба. Свое название она получила от острова Делос в Эгейском море, где, по легенде, чтобы избавить жителей от эпидемии, оракул повелел удвоить алтарь, имевший форму куба. Но в действительности она, наверное, возникла в умах математиков как обобщение задачи об удвоении квадрата. Для того чтобы построить квадрат вдвое большей площади, чем данный, достаточно провести у данного квадрата диагональ (рис. 1д) и принять ее за сторону нового квадрата.

Задача об удвоении куба оказалась существенно более трудной. Если обозначить через а длину стороны исходного куба, а через х-длину стороны вдвое большего куба, то получим соотношение х3 = 2а3 -снова кубическое уравнение. В 1837 г. тот же П. Ванцель доказал, что невозможно построить с по мощью только циркуля и линейки отрезок, в 1/2 раз больший данного, т.е. подтвердил неразрешимость задачи удвоения куба.

Естественно, что существовали способы приближенного решения этой задачи и решения ее с помощью других инструментов и кривых. Так, уже в IV в. до н.э. древнегреческие математики умели находить корень уравнения x3 = 2a3 как абсциссу точки пересечения двух парабол х2 = aу и у2 = 2ах, а также других конических сечений.

На протяжении многих веков три знаменитые задачи древности привлекали внимание выдающихся математиков. В процессе их решения рождались и совершенствовались многие математические методы.

УДВОЕНИЕ КУБА

В этой задаче требуется построить циркулем и линейкой куб вдвое большего объёма, чем заданный. Ребро искомого куба равно а

,где а - ребро исходного куба. Если принять, что а = 1, то искомое ребро х есть корень уравнения x3 - 2 = 0. У данного уравнения нет рациональных, а значит, и квадратично-ирациональных корней. Следовательно, удвоение куба нельзя осуществить циркулем и линейкой. Примерно такое расуждение было применено в начале XIX в., когда был подготовлен необходимый для этого алгебраический аппарат.

Считают, что задача об удвоении куба появилась во времена пифагорейцев, около 540 г. до н. э. Возможно, она возникла из задачи об удвоении квадрата, которую легко решить, опираясь на теорему Пифагора, — надо построить квадрат на диагонали данного квадрата. Согласно легенде, жители Афин, на которых боги ниспослали эпидемию чумы, отправили делегацию к оракулу на остров Делос за советом, как задобрить богов и избавиться от морового поветрия. Ответ был таков:

«Удвойте жертвенник храма Аполлона, и чума прекратится». Жертвенник имел кубическую форму. Афиняне решили, что задание простое, и построили новый жертвенник, с вдвое большим ребром. Однако чума только усилилась. Вторично обратились к оракулу и получили ответ: «Получше изучайте геометрию». История умалчивает о том, как удалось умилостивить богов, но чума в конце концов покинула город. А задачу об удвоении куба стали называть делосской задачей.

Известна и другая легенда. Греческий комментатор VI в. до н. э. сообщает о письме, предположительно написанном царю Птолемею I. В нём говорится, что царь Минос построил на могиле сына надгробие кубической формы, но остался недоволен размерами памятника и приказал удвоить его, увеличив вдвое ребро куба. Комментатор указывает на ошибку царя Миноса (площадь поверхности памятника в результате увеличилась в четыре, а объём — в восемь раз) и рассказывает, что тогда геометры попытались решить эту задачу.

Но так и не сумев с ней справиться с помощью циркуля и линейки, греки попробовали применить другие инструменты, механизмы и даже специальные кривые. Гиппократ Хиосский, знаменитый геометр V в. до н. э., свёл удвоение куба к построению «двух средних пропорциональных» х и у для данных отрезков а и b, т. е. к решению уравнений