Смекни!
smekni.com

Аналитический метод в решении планиметрических задач (стр. 3 из 6)

или

Полученную формулу для вычисления угла от прямой l1 до прямой l2 можно записать и так:

Отсюда следует, что

тогда и только тогда, когда k1k2 = - 1, т.е. условие k1k2 = - 1 выражает признак перпендикулярности прямых l1 и l2.

Приступая к решению геометрической задачи, следует рационально выбрать систему координат, присоединить её к данной фигуре наиболее естественным образом. Желательно, чтобы данные точки располагались на осях координат, тогда среди координат будут нули. Это позволит упростить вычисления.

1.6. Аналитическое задание геометрических фигур.Аналитическое условие и геометрические фигуры.

После того как на плоскости введена система координат, мы получаем возможность рассматривать на этой плоскости такие множества точек (а они - то и образуют те или иные геометрические фигуры), координаты х, у которых удовлетворяют тем или иным условиям (ограничениям). Эти условия могут носить характер уравнений, неравенств или систем уравнений и неравенств. Обратно, если на плоскости имеется некоторая геометрическая фигура (т.е. некоторое множество точек этой плоскости), то возникает задача нахождения аналитических условий, связывающих координаты х, у точек плоскости, которым удовлетворяют координаты всех точек данной фигуры и не удовлетворяют координаты никаких точек плоскости, не принадлежащих этой фигуре.

Аналитические условия, связывающие две переменных х, у и характеризующие фигуры Ф, с точки зрения математической логики представляют собой двухместный предикат Р(х, у), заданный на множестве вещественных чисел: х, у Î R. Множество истинности этого предиката как раз и представляют собой такое множество пар действительных чисел х, у, которые служат координатами точек фигуры Ф и только таких точек. Этот факт записывают следующим образом:

Ф = {М(х, у): Р(х, у) – истинно}.

При этом, нетрудно понять, что если предикат Р(х. у) представляет собой конъюнкцию двух предикатов P1(х, у) Ù Р2 (х, у), то фигура Ф есть пересечение двух фигур Ф = {М (х, у): Р1 (х, у) Ù Р2 (х, у) – истинно} = {М (х, у): Р1 (х, у) – истинно} Ç {М (х, у): Р2 (х, у) – истинно} = Ф1 Ç Ф2.

Аналогично, если предикат Р(х, у) представляет собой дизъюнкцию двух предикатов P1(х, у) Ú Р2 (х, у), то фигура Ф есть объединение фигур Ф = Ф1 È Ф2.

Итак, при координатном подходе к изучению геометрических фигур выделяются две взаимно обратные задачи:

1. по заданным геометрическим свойствам фигуры Ф составить аналитические условия Р (х, у), определяющие эту фигуру;

2. по заданным аналитическим условиям Р (х, у), определяющим фигуру Ф, выяснить её геометрические свойства.

Составление аналитических условий, определяющих фигуру.

Здесь по геометрическому описанию фигуры Ф требуется сформулировать такие аналитические условия Р(х, у), что будут справедливы два утверждения:

а) если точка М(х, у) Î Ф, то её координаты х, у удовлетворяют условиям Р(х, у), т.е. будучи поставлены в этот предикат, превращают его в истинное утверждение (высказывание);

б) если координаты точки М(х, у) удовлетворяют условиям Р(х, у), то М Î Ф.

Ясно, что второе утверждение можно заменить равносильным ему утверждением:

б`) если точка М не принадлежит фигуре Ф, то её координаты не удовлетворяют условию Р(х, у).

Практически это делается так. На данной фигуре Ф берется произвольная (или, как говорят, текущая) точка М(х, у) с текущими координатами х, у и отыскивается (необходимые и достаточные) условия принадлежности точки М фигуре Ф, т.е. строится некая модель этой геометрической ситуации (принадлежности М Î Ф). Затем в этой модели найденные условия переводятся на аналитический язык, т.е. на язык аналитической взаимосвязи текущих координат х, у текущей точки М.

Пример. Пусть на плоскости задана декартова система координат R = {O, i(а), j(а)}. Составим аналитические условия, определяющие правую полуплоскость с граничной прямой Оу вместе с её границей. Таким условием будет неравенство

, т.е. правая полуплоскость состоит из тех и только тех точек М(х, у), первые координаты которых (абсциссы) неотрицательны, поскольку все точки правой полуплоскости этим свойством обладают, а никакие точки, не принадлежащие правой полуплоскости (т.е. принадлежащие левой плоскости без граничной прямой Оу), этим свойством не обладают ( для них
).

Аналитические условия, определяющие I координатную четверть, представляют собой конъюнкцию двух предикатов:

, которые задают эту четверть как пересечение двух полуплоскостей: верхней (задаётся условием
) и правой (задается условием
). Аналогично, II четверть:
; III четверть:
; IV четверть:
.

Из рассмотренных примеров видим, что аналитическое задание линий (или, как еще говорят, кривых линий, или, короче, кривых) приводит к уравнениям с двумя неизвестными х, у вида:

F (х, у) = 0

Здесь следует отметить, что дать строгое определение понятию линии в том адекватном смысле, в каком мы осознаем эти математические объекты с интуитивной точки зрения, весьма непросто. Понятие линии является одним из сложных понятий математики. Самое общее определение этого понятия рассматривается в топологии. Это понятие впервые было определено математиком П.С. Урысоном в 20-х годах XX века. Ограничимся пока следующими двумя определениями.

Определение. Уравнением данной линии L в заданной системе координат R = {О; е(а)1, е(а)2} называется такое уравнение F (х, у) = 0 с двумя неизвестными х, у, которому удовлетворяют координаты х, у каждой точки этой линии (т.е. будучи представлены в это уравнение превращают его в верное равенство) и не удовлетворяют координаты никакой точки, не принадлежащей этой линии.

М (х, у) – текущая точка линии L; х, у – текущие координаты.

Определение. Линией, определяемой уравнением F (х, у) = 0 в заданной системе координат R = {О; е(а)1, е(а)2}, называется множеством (или совокупность, или геометрическое место) всех точек плоскости, координаты которых удовлетворяют данному уравнению.

L ={М (х, у): F (х, у) = 0}.

Здесь необходимо отметить, что сформулированное определение линии оказывается весьма широким, так что под него попадают объекты, никак не отвечающие нашему наглядному (интуитивному) представлению о линии. Другими словами, далеко не каждое уравнение вида F (х, у) = 0 определяет на координатной плоскости геометрическую фигуру, которую мы склонны считать линией.

В качестве примера приведем два уравнения. Первое х - |х| = 0, как легко видеть, определяет на координатной плоскости правую полуплоскость, так как оно равносильно неравенству:

. Второе х+у-|х|-|у|=0 равносильно системе (конъюнкции) двух неравенств
и потому определяет на плоскости одну точку, а уравнение х2 + у2 + 1 = 0 вообще не определяет на плоскости никакой геометрической фигуры.

Для того чтобы уравнение вида F (х, у) = 0 определяло геометрическую фигуру, отвечающую нашему наглядному представлению о линии, следует, вообще говоря, функцию F (х, у) = 0 подчинить некоторым ограничениям. Одним из таких является требование того, чтобы уравнение F (х, у) = 0 и у = f(х) были эквивалентны, т.е. любая пара действительных чисел, удовлетворяющая первому уравнению, удовлетворяет и второму, и наоборот. В этом случае, как нетрудно понять, линия L, определяемая уравнением F (х, у) = 0 , будет графиком функции f(х).

Таким образом, мы приходим еще к одному способу аналитического задания линий плоскости. Он называется явным: здесь линия задается уравнением у = f(х), в котором у явно выражена через х, Этот способ хорошо известен из школьного курса алгебры и начала анализа. В отличие от него предыдущий способ, т.е. задание линии уравнением F (х, у) = 0, называется неявным: здесь ни одно из неизвестных не выражено явно через другое.

Наконец, рассмотрим еще один способ задания линий – параметрический. При таком задании каждое из неизвестных х и у выражается как функция через третью, неизвестную, переменную t, называемую параметром: