Смекни!
smekni.com

История математических констант - числа "пи" и "е" (стр. 1 из 2)

Введение

Числа много тысячелетий назад вошли в жизнь и быт людей. Человек их использует не только при счёте и вычислениях, он придумал различные игры с числами и шарады. Некоторые числа наделил сверхъестественными свойствами, например, такие как 13, 666. Среди бесконечного множества действительных чисел существуют ещё особенные, и не только для математиков, числа p и е. Эти числа имеют свои собственные обозначения, так как их нельзя записать точно с помощью цифр. Числа 3,14 и 2,7 лишь одни из приближённых значений чисел π и е. Эти числа являются иррациональными и трансцендентными, для их точного определения не хватило бы и триллиона десятичных знаков.

"Математиками изучены последовательности цифр е и p, и выяснено, что все цифры в этом числе встречаются с одинаковой частотой". Эти числа могут заворожить своей непокорностью, в особенности p. "Этому числу удавалось в течении тысячелетий держать в плену мысли и чувства не только математиков и астрономов, но и философов и художников". Тратились годы для вычисления нескольких десятичных знаков числа p.

История числа p

"Письменная история числа p начинается с египетского папируса, датируемого примерно 2000 годом до нашей эры, но оно было известно еще древним людям. Число p обратило на себя внимание людей ещё в те времена, когда они не умели письменно излагать ни своих знаний, ни своих переживаний, ни своих воспоминаний. С тех пор как первые натуральные числа 1,2,3,4,… стали неразлучными спутниками человеческой мысли, помогая оценивать количества предметов либо их длины, площади или объёмы, люди познакомились с числом p. Тогда оно ещё не обозначалось одной из букв греческого алфавита и его роль играло число 3. Нетрудно понять, почему числу p уделяли так много внимания. Выражая величину отношения между длиной окружности и её диаметром, оно появилось во всех расчётах связанных с площадью круга или длиной окружности". Но уже в глубокой древности математики довольно быстро и не без удивления обнаружили, что число 3 не совсем точно выражает то, что теперь известно как число пи. Безусловно, к такому выводу могли прийти только после того, как к ряду натуральных чисел добавились дробные или рациональные числа. Так египтяне получили результат:

В дальнейшем Архимед, используя метод верхних и нижних приближений, получает следующие границы числа пи. Индусы в V-VI веках пользовались числом
, китайцы - числом

"Обозначение числа p происходит от греческого слова

("окружность"). Впервые это обозначение использовал в 1706 году английский математик У. Джонс, но общепринятым оно стало после того, как его (начиная с 1736 года) стал систематически употреблять Леонард Эйлер". В конце 18 века И. Ламберт и А. Лежандр установили, что p иррациональное число, а в 1882 году Ф. Лидерман доказал, что оно трансцендентное, т.е. не может удовлетворять никакому алгебраическому уравнению с целыми коэффициентами.

На протяжении всего существования числа p, вплоть до наших дней, велась своеобразная "погоня" за десятичными знаками числа p. Леонардо Фибоначи около 1220 года определил три первых точных десятичных знаков числа p. В 16 веке Андриан Антонис определил 6 таких знаков. Франсуа Виет (подобно Архимеду), вычисляя периметры вписанного и описанного 322216-угольников, получил 9 точных десятичных знаков. Андриан Ван Ромен таким же способом получил 15 десятичных знаков, вычисляя периметры 1073741824-угольников. Лудольф Ван Кёлен, вычисляя периметры 32512254720-угольников, получил 20 точных десятичных знаков. Авраам Шарп получил 72 точных десятичных знаков числа p. В 1844 году З. Дазе вычисляет 200 знаков после запятой числа p, в 1847 году Т. Клаузен получает 248 знаков, в1853 Рихтер вычисляет 330 знаков, в том же 1853 году 440 знаков получает З. Дазе и в этом же году У. Шенкс получает 513 знаков. "С появлением ЭВМ количество верных знаков десятичных знаков резко возрастает:

1949 год - 2037 десятичных знаков (Джон фон Нейман, ENIAC), 1958 год - 10000 десятичных знаков (Ф. Женюи, IBM-704), 1961 год - 100000 десятичных знаков (Д. Шенкс, IBM-7090), 1973 год - 10000000 десятичных знаков (Ж. Гийу, М. Буйе, CDC-7600), 1986 год - 29360000 десятичных знаков (Д. Бейли, Cray-2), 1987 год - 134217000 десятичных знаков (Я. Канада, NEC SX2), 1989 год - 1011196691 десятичных знаков (Д. Гудновски и Г. Гудновски, Cray-2+IBM-3040)"

При вычислении верных десятичных знаков числа p пользовались различными способами, некоторые, как и Архимед вычисляли периметры вписанных и описанных n-угольников, но позднее стали прибегать к помощи рядов.

Так Лейбниц вычислял с помощью ряда:

Шарп применил ряд:

Л. Эйлер с помощью ряда:

З. Дазе использовал ряд.

Джон Валлис (1616-1703) нашёл бесконечное произведение, с помощью которого можно вычислить число пи:

Определение числа p

Теорема: Отношение длины окружности к её диаметру одинаково для всех окружностей.

Доказательство.

Обозначим через L - длину окружности, через d - её диаметр, то формулировка теоремы запишется следующим образом:

Рассмотрим правильный n-угольник, вписанный в окружность радиуса r со стороной аn и периметром Рn, то
Докажем, что отношение одинаково для всех окружностей. Рассмотрим две произвольные окружности с вписанными в них правильными n-угольниками. Из подобия треугольников АОВ и А1О1В1 следует, что
т.к. окружности брали произвольные, то это равенство будет справедливо для всех окружностей. Итак,
для всех окружностей, следовательно
Это отношение длины окружности к её диаметру принято обозначать греческой буквой "p".

Определение: Числом p называется отношение длины окружности к её диаметру.

История числа е

Число

появилось сравнительно недавно. Его иногда называют "неперовым числом" в честь изобретателя логарифмов шотландского математика Джона Непера (1550-1617), однако необоснованно, так как нет твёрдых оснований для утверждения, что Непер имел о числе е чёткое представление" [10]. Впервые обозначение "е" ввёл Леонард Эйлер (1707-1783). Он также вычислил точные 23 десятичные знака этого числа, использовав представление числа е в виде бесконечного числового ряда:
полученное Даниилом Бернули (1700-1782). "В 1873 году Эрмит доказал трансцендентность числа е.Л. Эйлер получил замечательный результат, связывающий числа е, p, и
:
. Ему принадлежит и заслуга определения функции
для комплексных значений z, что положило начало математическому анализу в комплексной области - теории функций комплексного переменного" [10]. Эйлером были получены следующие формулы:
Рассматривают логарифмы по основанию е, называемые натуральными и обозначаются Lnx.

Способы определения

Число e может быть определено несколькими способами.

Через предел:

(второй замечательный предел) .

Как сумма ряда:

или
.

Как единственное число a, для которого выполняется

Как единственное положительное число a, для которого верно

Свойства

Данное свойство играет важную роль в решении дифференциальных уравнений. Так, например, единственным решением дифференциального уравнения
является функция
, где c - произвольная константа.

Число e иррационально и даже трансцендентно. Это первое число, которое не было выведено как трансцендентное специально, его трансцендентность была доказана только в 1873 году Шарлем Эрмитом. Предполагается, что e - нормальное число, то есть вероятность появления разных цифр в его записи одинакова.

, см. формула Эйлера, в частности

Ещё одна формула, связывающая числа е и π, т. н. "интеграл Пуассона" или "интеграл Гаусса"