Смекни!
smekni.com

Комплексные соединения 2 (стр. 2 из 3)

Произведением и суммой сопряжённых чисел являются действительные числа:

(a + bi) + (a – bi) = 2a,

(a + bi) ∙ (a – bi) = a2 + b2.

Позже, когда была предложена геометрическая интерпретация комплексных чисел, возникла необходимость введения нового понятия – длины вектора, соответствующего комплексному числу. Его стали называть модулем комплексного числа и обозначать:

по предложению швейцарского математика Жана Аргана.

Самостоятельно изучив пример

, я пришёл к выводу, что и сумма корней двух сопряжённых чисел равна действительному числу. Действительно, обозначив конечный результат за x и учитывая, что обе части неотрицательны, я имею право возвести выражение в квадрат:

Раскрыв скобки и выполнив возможные действия в левой части, я получил:

. Т.е.

Так как a и b – действительные числа, то и это выражение будет действительным. Я доказал это на примере:

. Возведя в квадрат, я получил:

.

Т.е.

=
.

Сложение комплексных чисел. Суммой двух комплексных чисел z1 = a + bi и z2 = c + di называется комплексное число z = (a + c) + (b + d)i. Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.

Вычитание комплексных чисел определяется как действие, обратное сложению: разностью двух комплексных чисел a + bi и c + di называется комплексное число х + yi, которое в сумме с вычитаемым дает уменьшаемое. Отсюда, исходя из определения сложения и равенства комплексных чисел, получим два уравнения, из которых найдем, что х = a – c, у = b – d. Значит,

(a + bi) – (c + di) = (a – c) + (b – d)i.

Произведение комплексных чисел z1 = a + bi и z2 = c + di называется комплексное число z = (ac – bd) + (ad + bc)i, z1z2 = (a + bi) ∙ (c + di) = (ac – bd) + + (ad + bc) i. Легко проверить, что умножение комплексных чисел можно выполнять как умножение многочленов с заменой i2 на –1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.

Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем:

Или короче:

.

Степень числа i является периодической функцией с периодом 4. Я доказал это утверждение: i3 = i2 ∙ i = (– 1) i = – i; i4 = i3 ∙ i = (– i) i = – i2 = – (– 1) = 1; i5 =

= i4 ∙ i = 1 ∙ i = i; i6 = i5 ∙ i = i ∙ i = – 1. Вообще, i4n + k = (i4)n ∙ ik = 1n ∙ ik.

4

РЕШЕНИЕ УРАВНЕНИЙ С КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ

Сначала я рассмотрел простейшее квадратное уравнение z2 = a, где a – заданное число, z – неизвестное. На множестве действительных чисел это уравнение:

1) имеет один корень z = 0, если a = 0;

2) имеет два действительных корня z1,2 = ±

, если a > 0;

3) не имеет действительных корней, если a < 0;

4) на множестве комплексных чисел это уравнение всегда имеет корень.

Вообще уравнение z2 = a, где a < 0 имеет два комплексных корня: z1,2

i.

Используя равенство i2 = –1, квадратные корни из отрицательных чисел принято записывать так:

= i,
= i
= 2i,
= i
.

Итак,

определен для любого действительного числа a (положительного, отрицательного и нуля). Поэтому любое квадратное уравнение

az2 + bz + c = 0, где a, b, с – действительные числа, a ≠ 0, имеет корни. Эти корни находятся по известной формуле:

z1, 2 =

.

Также справедливо утверждение, что любое уравнение степени n имеет ровно n корней, при этом среди них могут быть одинаковые и комплексные.

Невозможно не рассмотреть одну из красивейших формул математики – формулу Кардано для вычисления корней кубического уравнения вида x3 + px + q = 0:

.

По видимому, эту же формулу ранее получили Сцепион дель Ферро и Николо Фонтане (Тарталья), но первым опубликовал эту формулу именно Кардано.

5

ГЕОМЕТРИЯ КОМПЛЕКСНЫХ ЧИСЕЛ

Наглядно представить мнимые числа пытались ещё в XVIII веке.

В 1799 г. датский математик Каспар Вессель предложил простую геометрическую интерпретацию комплексных чисел, однако его работа осталась незамеченной. В 1806 г. швейцарец Жан Агран высказал похожую идею. Но широкое распространение эта интерпретация получила лишь через три десятка лет, когда Карл Фридрих Гаусс выпустил в свет труд «Теория биквадратных вычетов», в котором дал такое же геометрическое изображение комплексных чисел, как Вессель и Агран. Больше всего меня поразило то, что практически одновременно, независимо друг от друга трое учёных предложили одну и ту же идею. Это говорит о том, что идея буквально витала в воздухе. Вообще, именно это открытие способствовало дальнейшему развитию учения о комплексных числах: стала возможна тригонометрическая запись числа, и, как следствие, намного удобнее стали возведение в степень и извлечение корня.

Точками на числовой оси можно представлять как действительные, так и мнимые числа (но только не на одной и той же оси). Значит, чтобы одновременно изобразить действительные и мнимые числа нужно взять сразу две оси. Назовём их действительной осью и мнимой осью и расположим перпендикулярно. Для определённости выберем положительное направление действительной оси вправо, а мнимой – вверх.

Теперь можно наглядно представить операции сложения и вычитания комплексных чисел с помощью векторов.

Аргумент комплексного числа. Когда я изображал комплексно-сопряжённые числа как вектора, возникла неопределённость, так как углы между соответствующими сопряжённым числам векторами равны. Во избежание этой неопределённости необходимо ввести понятие направления измерения угла и как следствие – отрицательные углы. Направление от положительной полуоси против часовой стрелки значение угла принято считать положительным, а против – отрицательным. Этот угол называют аргументом комплексного числа и обозначают так: φ = arg z. Обычно он измеряется не в градусах, а в радианах. Но и аргумент не полностью устраняет неопределённость. Выходит, если φ – аргумент комплексного числа, то и φ + 2πk (k = 0, ±1, ±2, …). Но эту неопределённость устранять не стоит (она понадобилась мне для извлечения корня из комплексного числа).

Модуль комплексного числа. Я заметил одну интересную закономерность. Если каждое действительное число имеет только одно число с таким же модулем, то комплексные числа имеют бесконечное множество чисел с одинаковым модулем. Действительно, если взять точку M, соответствующую числу z = a + bi на координатной плоскости, провести к ней радиус-вектор, а потом провести окружность радиуса |z| =

с центром в точке O, то будет видно, что все числа, имеющие такой же модуль |z| =
, будут лежать на этой окружности.

Тригонометрическая форма записи комплексных чисел.


Я взял произвольное комплексное число z = a + bi и изобразил его в виде радиус-вектора

на комплексной плоскости. Пусть N – проекция точки M на действительную ось. В прямоугольном треугольнике OMN длины катетов ON и OM равны соответственно a и b, а длина гипотенузы OM равна
. Из тригонометрии известно, что отношение длины катета к длине гипотенузы равняется косинусу прилежащего угла и синусу противолежащего. Следовательно,