Смекни!
smekni.com

Билеты по физике за весь школьный курс (стр. 5 из 15)

Изобарным процессом называется процесс, протекающий при неизменном давлении, массе и составе газа. Аналогичным образом как и для изохорного процесса можно получить уравнение для изобарного процесса

. Уравнение, описывающее этот процесс, называется законом Гей-Люссака. График уравнения изобарного процесса называется изобарой, и представляет из себя прямую, проходящую через начало координат.

27. Внутренняя энергия. Работа в термодинамике.

Если потенциальная энергия взаимодействия молекул равна нулю, то внутренняя энергия равна сумме кинетических энергий движения всех молекул газа

. Следовательно, при изменении температуры изменяется и внутренняя энергия газа. Подставив в уравнение для энергии уравнение состояния идеального газа, получим, что внутренняя энергия прямо пропорциональная произведению давления газа на объем.
. Внутренняя энергия тела может изменяться только при взаимодействии с другими телам. При механическом взаимодействии тел (макроскопическом взаимодействии) мерой передаваемой энергии является работа А. При теплообмене (микроскопическом взаимодействии) мерой передаваемой энергии является количество теплотыQ. В неизолированной термодинамической системе изменение внутренней энергии DU равно сумме переданного количества теплоты Q и работы внешних сил А. Вместо работы А, совершаемой внешними силами, удобнее рассматривать работу А`, совершаемую системой над внешними телами. А=–А`. Тогда первый закон термодинамики выражается как
, или же
. Это означает, что любая машина может совершать работу над внешними телами только за счет получения извне количества теплоты Q или уменьшения внутренней энергии DU. Этот закон исключает создание вечного двигателя первого рода.

28. Количество теп­лоты. Удельная теплоемкость вещества. Закон сохранения энергии в тепловых процессах (первый закон термодинамики).

Процесс передачи теплоты от одного тела к другому без совершения работы называют теплообменом. Энергия, переданная телу в результате теплообмена, называется количеством теплоты. Если процесс теплопередачи не сопровождается работой, то на основании первого закона термодинамики

. Внутренняя энергия тела пропорциональна массе тела и его температуре, следовательно
. Величина с называется удельной теплоемкостью, единица –
. Удельная теплоемкость показывает, какое количество теплоты необходимо передать для нагревания 1 кг вещества на 1 градус. Удельная теплоемкость не является однозначной характеристикой, и зависит от работы, совершаемой телом при теплопередаче.

При осуществлении теплообмена между двумя телами в условиях равенства нулю работы внешних сил и в тепловой изоляции от других тел, по закону сохранения энергии

. Если изменение внутренней энергии не сопровождается работой, то
, или же
, откуда
. Это уравнение называется уравнением теплового баланса.

29. Применение первого закона термодинамики к изопроцессам. Адиабатный про­цесс. Необратимость тепловых процессов.

Одним из основных процессов, совершающих работу в большинстве машин, является процесс расширения газа с совершением работы. Если при изобарном расширении газа от объема V1до объема V2 перемещение поршня цилиндра составило l, то работа A совершенная газом равна

, или же
. Если сравнить площади под изобарой и изотермой, являющиеся работами, можно сделать вывод, что при одинаковом расширении газа при одинаковом начальном давлении в случае изотермического процесса будет совершено меньше количество работы. Кроме изобарного, изохорного и изотермического процессов существует т.н. адиабатный процесс. Адиабатным называется процесс, происходящий при условии отсутствия теплообмена. Близким к адиабатному может считаться процесс быстрого расширения или сжатия газа. При этом процессе работа совершается за счет изменения внутренней энергии, т.е.
, поэтому при адиабатном процессе температура понижается. Поскольку при адиабатном сжатии газа температура газа повышается, то давление газа с уменьшением объема растет быстрее, чем при изотермическом процессе.

Процессы теплопередачи самопроизвольно осуществляются только в одном направлении. Всегда передача тепла происходит к более холодному телу. Второй закон термодинамики гласит, что неосуществим термодинамический процесс, в результате которого происходила бы передача тепла от одного тела к другому, более горячему, без каких-либо других изменений. Этот закон исключает создание вечного двигателя второго рода.

30. Принцип действия тепловых двигателей. КПД теплового дви­гателя.

Обычно в тепловых машинах работа совершается расширяющимся газом. Газ, совершающий работу при расширении, называется рабочим телом. Расширение газа происходит в результате повышения его температуры и давления при нагревании. Устройство, от которого рабочее тело получает количество теплотыQ называется нагревателем. Устройство, которому машина отдает тепло после совершения рабочего хода, называется холодильником. Сначала изохорически растет давление, изобарически расширяется, изохорически охлаждается, изобарически сжимается. <рисунок с подъемником>. В результате совершения рабочего цикла газ возвращается в начальное состояние, его внутренняя энергия принимает исходное значение. Это значит, что

. Согласно первому закону термодинамики,
. Работа, совершаемая телом за цикл, равна Q. Количество теплоты, полученное телом за цикл, равно разности полученного от нагревателя и отданного холодильнику
. Следовательно,
. Коэффициентом полезного действия машины называется отношение полезно использованной к затраченной энергии
.

31. Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха.

Неравномерное распределение кинетической энергии теплового движения приводит к тому. Что при любой температуре кинетическая энергия некоторой части молекул может превысить потенциальную энергию связи с остальными. Испарением называется процесс, при котором с поверхности жидкости или твердого тела вылетают молекулы. Испарение сопровождается охлаждением, т.к. более быстрые молекулы покидают жидкость. Испарение жидкости в закрытом сосуда при неизменной температуре приводит к увеличению концентрации молекул в газообразном состоянии. Через некоторое время наступает равновесие между количеством испаряющихся молекул и возвращающихся в жидкость. Газообразное вещество, находящееся в динамическом равновесии со своей жидкостью, называется насыщенным паром. Пар, находящийся при давлении ниже давления насыщенного пара, называется ненасыщенным. Давление насыщенного пара не зависит при постоянной температуре от объема (из

). При постоянной концентрации молекул давление насыщенного пара растет быстрее, чем давление идеального газа, т.к. под действием температуры количество молекул увеличивается. Отношение давления водяного пара при данной температуре к давлению насыщенного пара при той же температуре, выраженное в процентах, называется относительной влажностью воздуха
. Чем ниже температура, тем меньше давление насыщенного пара, таким образом при охлаждении до некоторой температуры пар становится насыщенным. Эта температура называется точкой росы tp.

32. Кристаллические и аморфные тела. Механические свойства твердых тел. Упругие деформации.

Аморфными называются тела, физические свойства которых одинаковы по всем направлениям (изотропные тела). Изотропность физических свойств объясняется хаотичностью расположения молекул. Твердые тела, в которых молекулы упорядочены, называются кристаллами. Физические свойства кристаллических тел неодинаковы в различных направлениях (анизотропные тела). Анизотропия свойств кристаллов объясняется тем, что при упорядоченной структуре силы взаимодействия неодинаковы по различным направлениям. Внешнее механическое воздействие на тело вызывает смещение атомов из положения равновесия, что приводит к изменению формы и объема тела – деформации. Деформацию можно охарактеризовать абсолютным удлинением, равным разности длин до и после деформации

, или относительным удлинением
. При деформации тела возникают силы упругости. Физическая величина, равная отношению модуля силы упругости к площади сечения тела называется механическим напряжением
. При малых деформациях напряжение прямо пропорционально относительному удлинению
. Коэффициент пропорциональности Е в уравнении называется модулем упругости (модулем Юнга). Модуль упругости является постоянной для данного материала
, откуда
. Потенциальная энергия деформированного тела равна работе, затраченной на растяжение или сжатие. Отсюда
.