Смекни!
smekni.com

Нобелевские лауреаты в области физики (стр. 5 из 14)

В 1963 г. исполнялось 50 лет боровской теории атома. Бор был полон надежд и уже предвкушал радость недалеких встреч со своими друзьями. Но дожить, к сожалению, до этого юбилея ему не пришлось. Бор умер 18 ноября 1963 г.

«Физики всего мира потрясены вестью о кончине великого датского ученого и мыслителя, основателя современной теории атома и атомного ядра Нильса Бора. Идеи Бора об основных законах атомной физики оказали на развитие этой науки за пос­ледние полвека такое огромное влияние, какое редко выпадает на долю одного человека... В лице Бора люди потеряли гениаль­ного ученого и мыслителя, борца за мир и взаимопонимание между народами, друга всего человечества»,—говорилось в некрологе, подписанном видными советскими учеными.

Генрих Рудольф Герц

ГЕНРИХ РУДОЛЬФ ГЕРЦ (1857—1894) родился 22 фев­раля в Гамбурге, в семье адво­ката, ставшего позднее сенато­ром. Учился Герц прекрасно и был непревзойденным по сооб­разительности учеником. Он любил все предметы, любил писать стихи и работать на то­карном станке. К сожалению, всю жизнь Герцу мешало сла­бое здоровье.

В 1875 г. после окончания гимназии Герц поступает в Дрезденское, а затем в Мюн­хенское высшее техническое училище. Дело шло хорошо до тех пор, пока изучались пред­меты общего характера. Но как только началась специали­зация, Герц изменил свое решение. Он не желает быть узким специалистом, он рвется к научной работе и поступает в Бер­линский университет. Герцу повезло: его непосредственным нас­тавником оказался Гельмгольц. Хотя знаменитый физик был приверженцем теории дальнодействия, но как истинный ученый он безоговорочно признавал, что идеи Фарадея — Максвелла о близкодействии и физическом поле дают прекрасное согласие с экспериментом.

Попав в Берлинский университет, Герц с большим желанием стремился к занятиям в физических лабораториях. Но к работе в лабораториях допускались лишь те студенты, которые зани­мались решением конкурсных задач. Гельмгольц предложил Герцу задачу из области электродинамики: обладает ли элект­рический ток кинетической энергией? Гельмгольц хотел напра­вить силы Герца в область электродинамики, считая ее наиболее запутанной.

Герц принимается за решение поставленной задачи, рассчи­танное на 9 месяцев. Он сам изготовляет приборы и отлаживает их. При работе над первой проблемой сразу же выявились зало­женные в Герце черты исследователя: упорство, редкое трудо­любие и искусство экспериментатора. Задача была решена за 3 месяца. Результат, как и ожидалось, был отрицательным. (Сейчас нам ясно, что электрический ток, представляющий со­бой направленное движение электрических зарядов (электро­нов, ионов), обладает кинетической энергией. Для того чтобы Герц мог обнаружить это, надо было повысить точность его экс­перимента в тысячи раз.) Полученный результат совпадал с точ­кой зрения Гельмгольца, хотя и ошибочной, но в способностях молодого Герца он не ошибся. «Я увидел, что имел дело с учени­ком совершенно необычного дарования», — отмечал он позднее. Работа Герца была удостоена премии.

Вернувшись после летних каникул 1879 г., Герц добился раз­решения работать над другой темой: <0б индукции во вращаю­щихся телах», взятой в качестве докторской диссертации. Это была теоретическая работа. Он предполагал завершить ее за 2—3 месяца, защитить и получить поскорее звание доктора, хотя университет еще не был закончен. Работая с большим подъемом и воодушевлением, Герц быстро закончил исследование. Зашита прошла успешно, и ему присудили степень доктора с «отличи­ем» — явление исключительно редкое, тем более для студента.

С 1883 по 1885 г. Герц заведовал кафедрой теоретической физики в провинциальном городке Киле, где совсем не было физической лаборатории. Герц решил заниматься здесь теорети­ческими вопросами. Он корректирует систему уравнения элект­родинамики одного из ярких представителей дальнодействия Неймана. В результате этой работы Герц написал свою систему уравнений, из которой легко получались уравнения Максвелла. Герц разочарован, ведь он пытался доказать универсальность электродинамических теорий представителей дальнодействия, а не теории Максвелла. «Данный вывод нельзя считать точным доказательством максвелловской системы как единственно воз­можной», — делает он для себя, по существу, успокаивающий вывод.

В 1885 г. Герц принимает приглашение технической школы в Карлсруэ, где будут проведены его знаменитые опыты по распро­странению электрической силы. Еще в 1879 г. Берлинская акаде­мия наук поставила задачу: «Показать экспериментально нали­чие какой-нибудь связи между электродинамическими силами и диэлектрической поляризацией диэлектриков». Предварительные подсчеты Герца показали, что ожидаемый эффект будет очень мал даже при самых благоприятных условиях. Поэтому, видимо, он и отказался от этой работы осенью 1879 г. Однако он не пе­реставал думать о возможных путях ее решения и пришел к выводу, что для этого нужны высокочастотные электрические колебания.

Герц тщательно изучил все, что было известно к этому вре­мени об электрических колебаниях и в теоретическом, и в экс­периментальном планах. Найдя в физическом кабинете техни­ческой школы пару индукционных катушек и проводя с ними лек­ционные демонстрации, Герц обнаружил, что с их помощью можно было получить быстрые электрические колебания с пе­риодом 10-8С. В результате экспериментов Герц создал не толь­ко высокочастотный генератор (источник высокочастотных коле­баний), но и резонатор — приемник этих колебаний.

Генератор Герца состоял из индукционной катушки и присое­диненных к ней проводов, образующих разрядный промежуток,

резонатор — из провода прямо­угольной формы и двух шари­ков на его концах, образующих также разрядный промежуток. В результате проведенных опытов Герц обнаружил, что если в генераторе будут проис­ходить высокочастотные коле­бания (в его разрядном проме­жутке проскакивает искра), то в разрядном промежутке резо­натора, удаленном от генера­тора даже на 3 м, тоже будут проскакивать маленькие искры. Таким образом, искра во второй цепи возникала без всякого непосредственного контакта с первой цепью. Каков же механизм ее передачи? Или это электрическая индукция, согласно теории Гельмгольца, или электромагнитная волна, согласно теории Максвелла? В 1887 г. Герц пока ничего еще не говорит об элек­тромагнитных волнах, хотя он уже заметил, что влияние генера­тора на приемник особенно сильно в случае резонанса (частота колебаний генератора совпадает с собственной частотой резо­натора).

Проведя многочисленные опыты при различных взаимных положениях генератора и приемника, Герц приходит к выводу о существовании электромагнитных волн, распространяющихся с конечной скоростью. Будут ли они вести себя, как свет? И Герц проводит тщательную проверку этого предположения. После изу­чения законов отражения и преломления, после установления поляризации и измерения скорости электромагнитных волн он доказал их полную аналогию со световыми. Все это было изло­жено в работе «О лучах электрической силы», вышедшей в де­кабре 1888 г. Этот год считается годом открытия электромаг­нитных волн и экспериментального подтверждения теории Макс­велла. В 1889 г., выступая на съезде немецких естествоиспыта­телей, Герц говорил: «Все эти опыты очень просты в принципе, тем не менее они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестя­щую победу теории Максвелла. Насколько маловероятным каза­лось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение».

Напряженная работа Герца не прошла безнаказанно для его и без того слабого здоровья. Сначала отказали глаза, затем заболели уши, зубы и нос. Вскоре началось общее заражение крови, от которого и скончался знаменитый уже в свои 37 лет ученый Генрих Герц.

Герц завершил огромный труд, начатый Фарадеем. Если Максвелл преобразовал представления Фарадея в математические образы, то Герц превратил эти образы в видимые и слыши­мые электромагнитные волны, ставшие ему вечным памятником. Мы помним Г. Герца, когда слушаем радио, смотрим телевизор, когда радуемся сообщению ТАСС о новых запусках космических кораблей, с которыми поддерживается устойчивая связь с по­мощью радиоволн. И не случайно первыми словами, переданны­ми русским физиком А. С. Поповым по первой беспроволочной связи, были: «Генрих Герц».

Петр Капица

Опыт—вот учитель жизни вечный.

Гете

Академик ПЕТР ЛЕОНИДОВИЧ КАПИЦА (1894—1984)—выдаю­щийся советский физик, лауреат Нобелевской премии, дважды Герой Социалистического Труда, дважды лауреат Государст­венной премии СССР, почетный член 13 национальных и 2'меж­дународных академий наук, почетный доктор многих иностран­ных университетов и институтов, обладатель различных именных медалей. Он один из крупных и талантливых организаторов со­ветской науки, первоклассный исследователь-экспериментатор, автор ряда теоретических работ и конструктор-новатор.

П. Л. Капица родился 26 июня (9 июля) 1894 г. в Кронштад­те. Его отец, Леонид Петрович, был одаренным военным инже­нером, генералом, строителем укреплений Кронштадта; мать, Ольга Иеронимовна, была высоко образованной женщиной, от­давшей много сил литературной, педагогической н общественной деятельности.

После года учебы в гимназии Петр Капица перешел в Кронш­тадтское реальное училище, которое закончил с отличием. Уже в училище обнаружились его хорошие способности к физике и электротехнике. С детства он любил конструировать, проявив особое пристрастие к часам, которые после разборки и сборки порой «отказывались ходить».