Смекни!
smekni.com

Акустические свойства полупроводников (стр. 5 из 5)

Характеристики турбулентного состояния опреде­ляются, естественно, свойствами нелинейного коэффици­ента усиления. Расчеты показывают, что нелинейный .коэффициент усиления имеет максимум на более низ­кой частоте, чем линейный. В результате спектр шумов в процессе усиления смещается в область более низких частот — взаимодействие шумов через посредство дви­жений электронной концентрации приводит к «пере­качке» энергии в эту область. Такая перекачка неодно­кратно наблюдалась на опыте.

Возникает очень интересный вопрос: а возможна ли ситуация, в которой спектр шумов сужается в процессе усиления? Нельзя ли таким образом получить из уси­ленного шума когерентный акустический сигнал?

Согласно теории такой режим усиления в прин­ципе возможен, однако при таких условиях, которые на опыте реализовать совсем не просто. Может быть, по этой причине он до сих пор не наблюдался.

Расскажем еще об одном своеобразном проявле­нии турбулентного состояния. В этом состоянии неред­ко наблюдаются так называемые акустоэлектрические домены. Это — сгустки акустических шумов (ограни­ченные в пространстве волновые пакеты), периодически пробегающие по кристаллу. Поскольку такие домены «захватывают» электроны проводимости, при этом наб­людаются осцилляции тока в цепи, в которую включен

образец. Таким образом, полупроводник работает как' генератор периодических электрических импульсов.

В целом задача об усилении шумов далеко не про­ста. К настоящему времени удалось построить лишь теорию так называемой слабой турбулентности, когда интенсивность выросших шумов еще достаточно мала. Уже эта теория имеет весьма сложный вид.

С другой стороны, достигнуты серьезные успехи в экспериментальном изучении акустической турбулент­ности в полупроводниках. В последние годы появилась экспериментальная техника, очень удобная для иссле­дования поведения шумов. Это — изучение рассеяния света на усиленных акустических шумах. С помощью этой техники удается изучать распределение волн как по направлениям распространения, так и по частотам в любой точке кристалла. Таким образом, можно полу­чить весьма детальные сведения о нарастании акусти­ческих шумов. В связи с этим и в нашей стране и за рубежом сейчас ведется очень много работ по изуче­нию поведения звуковых шумов в полупроводниках.

.Состояние, о котором мы сейчас рассказали, является во многих отношениях уникальным, а с теоретиче­ской точки зрения — далеко не полностью понятым. Поэтому нам кажется, что дальнейшее его изучение может оказаться исключительно благодарным делом, потому что именно здесь в будущем можно ожидать наиболее интересные находки и открытия.

5. ЗВУКОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

До сих пор мы говорили о поглощении и усилении звука электронами проводимости. Есть, одна­ко, интересный эффект, о котором уже вкратце упоми­налось, связанный с обратным влиянием звуковой вол­ны на электроны, - звукоэлектрический эффект.

Бегущая звуковая волна увлекает за собой электро­ны проводимости, в результате чего, если замкнуть об­разец проводником, в' цепи потечет звукоэлектрический ток. Если же образец разомкнут, то на его концах воз­никнет разность потенциалов, а внутри его — звукоэлектрическое поле Езв. Оценить его можно из следующих соображений.

В процессе поглощения звука электронам, заклю­ченным в единице объема, в единицу времени передается энергия ГS. Импульс, передаваемый при этом электронам, есть ГS/ω. С другой стороны, эта величина должна быть равна силе, действующей на эти элек­троны со стороны звукоэлектрнческого поля - en0 Езв. В итоге получается следующая оценка:

Езв = ГS/en0ω (9)

Соответственно звукоэлектрический ток равен:

jзв = σ Езв= μГS/ω (10)

Это соотношение легко понять качественно — чем больше поглощение звука, тем больший импульс пере­дается от звука электронам н тем больше электронный ток.

Звукоэлектрический эффект в пьезополупроводниках имеет очень большую величину — при интенсивности звука 0,1 Вт/см2 звукоэлектрическое поле может достигать 15—20 В/см. Поэтому звукоэлектрический эф­фект может быть использован как весьма чувствитель­ный индикатор наличия звуковых волн в кристалле и измеритель их интенсивности.

Соотношения (9) и (10) остаются справедливыми и во внешнем электрическом поле, когда в полупровод­нике наряду со звукоэлектрическим током течет та«же ток проводимости. Поэтому при пороговом значении электрического поля, когда поглощение звука сменяет­ся его усилением, изменяет знак и звукоэлектрическое поле. Такую перемену знака легко понять физически: когда дрейфовая скорость электронов превышает ско­рость звука, звуковая волна уже не увлекает систему электронов, а тормозит ее как целое. Изменение знака звукоэлектрического эффекта 'неоднократно наблюда­лось на опыте.

А что произойдет, если направление, в котором рас­пространяется звук в кристалле, изменить на противо­положное? На первый взгляд кажется, что при этом (в отсутствие внешнего электрического поля) изменится лишь знак звукоэлектрического поля Езв. Тут можно рассуждать так: одновременно с изменением направ­ления распространения звука повернем мысленно и сам кристалл на 180°. Повернутый кристалл совпадает с исходным, и по существу ничего не изменилось. Это )рассуждение действительно подходит для полупроводника, кристаллическая решетка которого имеет центр симметрии. Мы же видели, что кристаллические решет­ки пьезополупроводников не имеют центра симметрией.

Поэтому в них при изменении направления распространения звука на противоположное может изменяться не только знак, но и величина Езв. Иными словами, звукоэлектрический эффект содержит четную и нечетную .части: первая не изменяется при изменении направления распространения звука, а вторая изменяет свой знак. Четный звукоэлектрический эффект также наблю­дался на опыте.

Звукоэлектрический эффект проявляется как при распространении звуковых сигналов, так и при усиле­нии шумов. Он играет важную роль в формировании акустоэлектрических доменов, о которых говорилось выше.

Исследования звукоэлектрического эффекта ве­дутся весьма активно, так как с их помощью можно непосредственно изучать электронные свойства полу­проводников.

Заключение

Мы рассмотрели ряд явлений, сопровождающих распространение ультразвука в полупроводниках

и металлах. Начав с простых эффектов, мы подошли к сложным проблемам, находящимся на переднем крае современной физики твердого тела. В силу ограничен­ности объема книги мы не смогли коснуться целого ря­да интересных вопросов. Так, мы не рассматривали не­линейных акустических явлений в металлах в магнит­ном поле, опустили очень интересный вопрос об особен­ностях распространения звука в сверхпроводниках. Не обсуждался также случай очень высокочастотного и ин­тенсивного звука, приводящего к квантованию движе­ния электронов в поле деформаций звуковой волны. Все эти вопросы в настоящее время изучаются, и в ближайшие годы мы надеемся узнать много нового об акустических свойствах твердых тел.

Можно надеяться, что эта область физики твердо­го тела будет интенсивно развиваться еще в течение целого ряда лет. А это значит, что, кроме перечислен­ных, здесь должны возникнуть и новые проблемы, по­явление которых пока предугадать нельзя, но постанов­ка и решение которых составят основное содержание этой области в ближайшем будущем.