Смекни!
smekni.com

Взаимодействие бета-частиц с веществом (стр. 1 из 8)

Курсовая работа на тему:

Взаимодействие бета-частиц с веществом


Для того чтобы уметь регистрировать ядерное излучение и для того чтобы уметь от него защищаться (если это нужно), необ­ходимо знать, за счет каких процессов теряет свою энергию части­ца, проходя через вещество; какова проникающая способность частиц; как зависят вероятности различных процессов взаимодей­ствия от параметров частицы (заряда, массы, энергии) и от свойств вещества (заряда ядер, плотности, ионизационного потен­циала).

Перечислим основные процессы взаимодействия заряженных частиц и Y-квантов с веществом (вопрос о взаимодействии нейтро­нов будет рассмотрен отдельно в главе, посвященной физике ней­тронов).

Взаимодействие заряженных частиц со средой.

1. Основной причиной потерь энергии заряженной частицей при прохождении через вещество являются столкновения ее с атомами этого веще­ства. Ввиду того, что масса ядра всегда велика по сравнению с массой электронов атома, можно достаточно четко провести раз­личие между «электронными столкновениями», при которых энер­гия падающей частицы передается одному из электронов атома, в результате чего происходит возбуждение или ионизация атома (неупругое столкновение), и «ядерными Столкновениями», при ко­торых импульс и кинетическая энергия частицы частично перехо­дят в поступательное движение атома как целого (упругое столк­новение). Повторяясь, эти ядерные столкновения приводят к многократному рассеянию частиц в веществе.

2. Существенную роль в потерях энергии легких заряженных частиц (электронов) играет также радиационное торможение. Сущность этого процесса заключается в том, что при рассеянии заряженной частицы кулоновским полем ядра или электрона эта частица получает ускорение, что в соответствии с законами электродинамики всегда приводит к электромагнитному излучению. Возникает непрерывный спектр

-лучей — тормозное излучение.

3. В случае тяжелой частицы (протон,

- частица и др.), когда ее энергия достаточно велика для преодоления кулоновского барье­ра ядра, может произойти также процесс потенциального рассея­ния на ядрах или же ядерная реакция, сопровождающаяся вылетом из ядра различных частиц, испусканием
- квантов, делением ядра и др.

4. При движении заряженной частицы в среде со скоростью, превышающей фазовую скорость света в этой среде

, где п — показатель преломления среды, возникает специфическое свечение, названное излучением Вавилова—Черенкова.

Взаимодействие

-излучения со средой.

-лучи, проходя через вещество, теряют свою энергию главным образом за счет следую­щих явлений.

1.Комптон-эффект, или рассеяние

- квантов на электронах, при котором фотоны передают часть своей энергии электронам атома.

2. Фотоэффект, или поглощение

- кванта атомом, когда вся энергия фотона передается электрону, вылетающему в результате этого из атома.

3. Образование электрон-позитронных пар — процесс, который может происходить в поле ядра или другой частицы при энергиях

-квантов

4. Ядерные реакции, возникающие обычно при энергиях

-квантов, превышающих 10 МэВ.

Во многих физических экспериментах применяются пучки электронов, причем энергия электронов может быть самой раз­ной — от долей электронвольта до миллионов электронвольт. В ядерной физике используются как пучки электронов, полученные на ускорителе, так и пучки электронов, возникающих при бета-распаде радиоактивных ядер - "бета-частицы". В обоих случаях могут быть получены сведения о свойствах атомных ядер и стро­ении вещества. Знание энергии бета-излучения необходимо для многих научных и практических целей.

В отличие от альфа-частиц бета-частицы, испускаемые каким-либо радиоактивным веществом, имеют непрерывный, энергети­ческий спектр, в котором представлены бета-частицы, имеющие все значения кинетической энергии от нуля до некоторого макси­мального значения.

Бета-распадом называется самопроизвольное превращение атомного ядра, при котором его заряд (Z) меняется на единицу, а массовое число (А) остается неизменным.

Различают три вида бета-распада:

1.

-распад, при котором из ядра испускается электрон
и антинейтрино
:

(1)

При

- распаде
, т. е. число протонов в ядре увеличи­вается на единицу, а число нейтронов уменьшается на единицу.

2.

-распад, при котором из ядра испускается позитрон
и нейтрино
:

. (2)

-распад может происходить только в случае, если масса ис­ходного атома превышает массу конечного атома на величину
. При
-распаде
.

3. Электронный захват, при котором один из электронов атом­ной оболочки (например, электрон К-оболочки) захватывается ядром и при этом испускается нейтрино

:

(3)

Если энергия распада больше энергии связи К-электронов (са­мых близких к ядру), то происходит преимущественно К-захват. При электронном захвате

.

Бета-процессы обусловлены слабым взаимодействием - одним из четырех видов известных фундаментальных взаимодействий. Однако вероятность бета-распада в отличие от "слабого" распада элементарных частиц, зависит от структуры ядра. Исследования бета-процессов привели к крупным открытиям в физике: обнаружению новой элементарной частицы — нейтрино и открытию несохранения четности при слабых взаимодействиях. Экспери­ментальное изучение бета-распада приносит много новых данных о структуре ядер.

При

- и
-распаде из ядра испускаются две частицы. В каждом единичном акте распада энергия перехода делится меж­ду бета-частицей и нейтрино (энергией отдачи ядра можно прене­бречь), так что кинетическая энергия электрона (или позитрона) может принимать любые значения от нуля до максимально воз­можной величины
. При электронном захвате энергия делится только между нейтрино и ядром отдачи, при этом нейтрино уно­сит практически всю энергию распада. Для большого количества одинаковых ядер в результате статистического усреднения полу­чается вполне определенное распределение электронов (позитро­нов) по энергиям. Это распределение называется бета-спектром, а величина
-
граничной энергией бета-спектра. Значения
для бета-распада для различных радиоактивных веществ могут сильно различаться. Например, радиоактивный нуклид
(три­тий) испускает бета-частицы с
=18,60 кэВ, в случае же
граничная энергия спектра равна 16,6 МэВ. Большая часть зна­чений
лежит в интервале 10—5000 кэВ. Максимальная энер­гия бета-частиц определяет энергию распада и является важной физической величиной.

Рис. 1. Бета-спектр и схема распада 32Р

Рис. 2. Бета-спектр

с линиями электронов внутренней конверсии