Смекни!
smekni.com

Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном возбуждении (стр. 8 из 25)

В работе Бегера В. Н., Земского В. И. [78] обнаружено, что температурные зависимости квантового выхода флуоресценции некоторых органических красителей в состоянии адсорбции носят существенно немонотонный характер. В диапазоне температур от 100 до 400 К имеются как интервалы уменьшения, так и увеличения (» от 110 до 200 К) квантового выхода флуоресценции. Авторами предложено объяснение выявленных особенностей способностью сложных молекул образовывать при адсорбции несколько устойчивых конфигураций относительно поверхности, отличающихся энергией взаимодействия адсорбат-адсорбент и эффективностью безызлучательной деградации энергии электронного возбуждения.

В ряде работ исследовано влияние температуры на эффективность передачи энергии триплетного возбуждения. Изменение передачи энергии от основы к примеси при понижении температуры исследовалось в [124,125]. Значительно меньше исследован вопрос о передаче энергии между самими примесными молекулами в кристаллах.

В работе Давыдова [126] показано, что учёт взаимодействия электронного возбуждения с колебаниями решётки приводит к зависимости вероятности передачи энергии от температуры.

В работе [127] экспериментально обнаружена передача энергии по триплетам между примесными молекулами фенантрена и нафталина в кристаллах дифенила, а так же уменьшение передачи при охлаждении до температуры жидкого азота.

В работе Жевандрова Н. Д. и Горшкова В. К. [128] исследовано влияние температуры на передачу энергии возбуждения синглетных состояний между молекулами разных примесей в кристаллах нафталина. Температурные тушения донора и акцептора энергии были учтены отдельно. Коэффициент передачи энергии вычислялся с учётом вероятности излучения – р, тушения - q и передачи - w:

. (6)


Значение коэффициента передачи энергии получено из отношений интегральных интенсивностей люминесценции и сенсибилизированной люминесценции для двух значений температуры. Полученные значения коэффициентов передачи при температуре паров жидкого гелия и при комнатной равны соответственно для пары антрацен-нафтацен kдагел = 0.30 и kдаком = 0.63, а для пары антрацен-люмоген kдагел = 0.45 и kдаком = 0.72. Следовательно, при понижении температуры до 6 К коэффициент передачи энергии между примесными молекулами в кристаллах нафталина уменьшается примерно в 2 раза.

Тот факт, что в полистирольных плёнках для этих же пар не наблюдалось изменение передачи энергии при изменении температуры [129], связан, по мнению авторов, с отсутствием кристаллической структуры. В некристаллической матрице все положения молекул равноценны, и, с учётом теории Давыдова, при возбуждении не происходит возникновение новых равновесных положений и новых колебательных состояний молекул. Поэтому зависимость формы полос от температуры выражена слабо, что объясняет отсутствие заметных изменений передачи энергии с температурой между молекулами донора и акцептора в некристаллической матрице, тогда как для кристаллической эти изменения весьма существенны.

В кристаллических матрицах величина взаимодействия электронного возбуждения с колебаниями решётки должна определяться характером этого взаимодействия. Поэтому зависимость коэффициента передачи энергии между примесными молекулами может сильно изменяться в зависимости от месторасположения молекул примеси в кристаллической матрице и характера их взаимодействия.

В н.-парафиновых твёрдых растворах влияние температуры на эффективность переноса энергии между молекулами различных примесей не исследовалось.

Опираясь на результаты температурных исследований, можно разделять виды тушения люминесценции. Согласно классификации, предложенной С.И. Вавиловым, виды тушения делятся на тушения первого и второго рода [130]. Тушением первого рода названы процессы, в которых выход люминесценции уменьшается при воздействиях на невозбуждённые молекулы вещества (такое тушение так же носит название статического [19]). Под тушением второго рода понимают процессы, в которых выход люминесценции уменьшается при воздействии на возбуждённые молекулы вещества.

Примером статического тушения может служить образование нефлуоресцирующих комплексов в основном состоянии, примером тушения второго рода – динамическое тушение, заключающееся в переносе энергии на невозбуждённые молекулы примеси. При тушении первого рода средняя длительность t возбуждённого состояния молекул сохраняется постоянной, так как в возбуждённое состояние переходят лишь те из них, которые избежали внешних воздействий; при тушении второго рода из-за воздействия на возбуждённые молекулы вещества t изменяется.

Для числа молекул в возбуждённом состоянии можно записать следующее выражение:

nВ = b N, (7)

где N – общее число молекул, b - коэффициент, показывающий, какая часть от общего числа молекул находится в возбуждённом состоянии.

Учитывая вышеуказанные типы тушения, можно сказать, что статическое тушение возбуждённых состояний обусловлено уменьшением N, а динамическое – уменьшением b.

Влияние температуры на статическое и динамическое тушение различно. Если статическое тушение обусловлено существованием ассоциатов, то повышение температуры уменьшает их стабильность, тем самым увеличивая общее число одиночных молекул N в растворе. Это ведёт за собой увеличение числа возбуждённых молекул и как следствие, увеличение интенсивности люминесценции.

Константа же динамического тушения с ростом температуры увеличивается [19]. Примером динамического тушения может служить кислородное тушение люминесценции в твёрдых растворах. Константа динамического тушения определяется скоростью, с которой молекулы кислорода диффундируют к центрам взаимодействия, а коэффициент диффузии увеличивается с ростом температуры.

Примером влияния температуры на статическое тушение люминесценции могут служить результаты работы [106]. Так, например, относительный выход люминесценции при нагревании водного раствора родамина 6Ж и бензопурпурина 4Б от 20 до 50° С увеличивается ~ в 2,7 раза. Т.е. он практически восстанавливается до значения, с которого начинается падение выхода свечения родамина 6Ж при увеличении содержания в растворе бензопурпурина 4Б. Это указывает на разрушение смешанных ассоциатов при нагревании.

Исследования Сапунова В.В. и Егоровой Г.Д. процесса ассоциации ряда порфиринов в водных растворителях выявили Аррениусовскую зависимость константы образования ассоциатов от температуры [129]:

, (8)

где Е – энергия активации рассматриваемого процесса.

Основная часть работ по изучению влияния температуры на степень ассоциации выполнена для жидких растворов. Подобных работ для твёрдых растворов в литературе обнаружить не удалось. В жидких растворах увеличение числа мономерных молекул при повышении температуры имеет обратимый характер, т.е. при понижении температуры их число уменьшается. По нашему мнению, в твёрдых растворах повышение температуры по той же причине, как и в жидких растворах, должно приводить к увеличению доли мономерных молекул. Однако, в этом случае может произойти после распада нарушение условий, необходимых для образования ассоциатов (изменение среднего расстояния между молекулами, их взаимной ориентации и т.д.). Такие различия могут быть обусловлены различной скоростью диффузионных процессов в жидкости и в твёрдом теле.

Одной из задач раздела химии, изучающего макрокинетику, является рассмотрение роли диффузии в химических процессах. «Как правило, результирующая скорость процессов в реальных системах определяется совместным переносом реагирующих между собой компонентов» [131]. Образование и распад ассоциатов, подобно химическим реакциям, обусловлены процессами межчастчного взаимодействия, только с меньшей энергией активации, и так же подчиняются законам химической кинетики. Вполне очевидно, что процессы межмолекулярного взаимодействия в реальных системах также должны быть взаимосвязаны с процессами переноса и описываться законами макрокинетики.

Для диффузии примесных молекул и процесса ассоциации, составляющих в совокупности реальный процесс, существуют характерные времена протекания – соответственно tD и tAS. Если tD « tAS, наблюдаемая скорость реакции должна определяться законами химической кинетики. В этом случае можно говорить о кинетическом режиме реакции. Если tD »tAS или это величины одного порядка, наблюдаемая скорость реакции в той или иной степени должна определяться скоростью диффузии реагентов. В этом случае можно говорить о диффузионном режиме реакции.

Для молекулярной диффузии tD = L2/D, где L – пространственная область, характеризующая её протекание, D – коэффициент диффузии. В случае рассмотрения влияния диффузии на процесс ассоциации, L – область взаимодействий, обуславливающих межмолекулярную связь.

Характер зависимости коэффициента диффузии от температуры в жидкости и в твёрдом теле существенно различен. В жидкости

D = kT/6prh, (9)

где r – размеры молекул, h - вязкость жидкости. В твёрдом теле