Смекни!
smekni.com

Діоди (стр. 2 из 7)

З погляду зонної теорії під генерацією вільних носіїв заряду слід розуміти перехід електронів з валентної зони в зону провідності (мал. 1.5,а). У результаті таких переходів у валентній зоні з'являються вільні енергетичні рівні, відсутність електронів на яких слід трактувати як наявність на них фіктивних зарядів - дірок. Перехід електронів із зони провідності у валентну зону слід трактувати як рекомбінацію рухомих носіїв заряду. Чим ширша заборонена зона, тим менше електронів здатно перейти через неї. Цим пояснюєтьсябільше висока концентрація електронів і дірок у германію в порівнянні із кремнієм. В електронному напівпровіднику (рис. 1.5,б) за рахунок наявності п’ятивалентних домішок у межах забороненої зони поблизу дна зони провідності з'являються дозволені рівні енергії ED. Оскільки один домішковий атом припадає приблизно на 106 атомів основної речовини, то домішкові атоми практично не взаємодіють один з одним. Тому домішкові рівні не утворюють енергетичну зону і їх зображують як один локальний енергетичний рівень ЕD, на якому перебувають "зайві" електрони домішкових атомів, не зайняті в ковалентні зв’язках. Енергетичний інтервал ΔEи= Ec-ED називається енергією іонізації. Величина цієї енергії для різнихп’ятивалентних домішок лежить у межах від 0,01 до 0,05 еВ, тому "зайві" електрони легко переходять у зону провідності.

У дірковому напівпровідникувведення тривалентних домішок веде до появи дозволених рівнів ЕA (pис.1.5, в), які заповнюються електронами, що переходять на нього з валентної зони, у результаті чого утворюються дірки. Перехід електронів з валентної зони в зону провідності вимагає більших витрат енергії, чим перехід на рівні акцепторів, тому концентрація електронів npвиявляється менше концентрації ni, а концентрацію дыpокpp можна вважати приблизно рівною концентрації акцепторів NA.

1.2. P-N – перехід як основа напівпровідникових діодів і

транзисторів

В основі більшості напівпровідникових діодів і транзисторів лежить контакт двох напівпровідників з різним типом електропровідності. Такий контакт називають електронно-дірковим переходом або p-n-переходом. Він може бути отриманий, наприклад, шляхом дифузії донорноїдомішки в напівпровідник p-типу. Структура p-n-переходу зображена на рис. 1.6,а. Включений в електричний ланцюг p-n-перехід має однобічну провідність, тобто йоговольтамперна характеристика нелінійна. Будемо вважати, що концентрація легуючої домішки в областяхn- і p- типу розподілена рівномірно, причому концентрація донорноїдомішки ND в n-напівпровіднику значно більша, ніж концентрація акцепторної домішки NA в p- напівпровіднику (ND>>NA). Назвемо n-область із більшою концентрацією домішки емітером, а p-область із меншою концентрацією домішки базою. Це допущення дозволяє вважати, що повнийструм через p-n-перехід визначається переважно електронною складовою. Діркова складова струму через p-n-перехід мала й нею можна знехтувати. Можна вважати, що зовнішні контакти до структури ( вони по своїй природі повинні мати двосторонню провідність із дуже малим опором ) вилучені від контакту на відстань, що значно перевищує дифузійну довжину електронів Ln у базі й дірок Lp в емітері. Коефіцієнт дифузії електронів в напівпровіднику можна визначити за допомогою формули:

(1.2)

Коефіцієнт дифузії залежить від зміни температури і дану зміну описує формула:

(1.3)

Тоді дифузійна довжина руху електронів складе:

(1.4)

Це допущення дозволяє вважати, що p-n-перехід локалізований поблизу границі x0. Позначимо границіp-n-переходу через xn й xp. Розподіл концентрації електронів уздовж осі x. Оскільки концентрація електронів в n-напівпровіднику nn (основні носії заряду) значно перевищує концентрацію електронів в p-напівпровіднику np (неосновні носії заряду), то в площині контакту виникає дифузія електронів з n-області в p-область. Аналогічні міркування приводять до дифузії дірок з p-області в n-область. У такий спосіб через p-n-перехід протікають дифузійні потоки основних носіїв заряду. Ідучи з напівпровідника n-типу, електрони залишають у приконтактнійобластіn-напівпровідника нескомпенсований позитивний нерухомий заряд іонів донорів QD+. Аналогічно в приконтактнойобластіp-напівпровідника з'являється рівний по величині нескомпенсований негативний нерухомий заряд іонів акцепторів QA-. У такий спосіб в області контакту з'являється електричне поле локалізоване поблизу границі x0. Будемо характеризувати його контактною різницею потенціалів φK0. Утворене поле перешкоджає руху основних носіїв через перехід й є причиною появи зустрічного дрейфового руху електронів з p-області в n-область. Таким чином, потоки неосновних носіїв заряду по своїй природі є дрейфовими. При зростанні концентрації легуючих домішок ND й NA контактна різниця потенціалів зростає , а ширина p-n-переходу зменшується. Необхідно відзначити, що областьp-n-переходу збіднена рухомими носіями заряду, тому що будь-який виникший у цій області або потрапивший в неїрухомий заряд виштовхується з області переходу електричним полем. Тому опір p-n-переходу значно вище, ніж опір n- і p- областей. Для основних носіїв заряду це поле створює потенційний бар'єр, а, отже, величина потоку основних носіїв заряду через перехід залежить від величин цього бар'єра. Для неосновних носіїв заряду поле в переході створює потенційну яму, а, отже, потік неосновних носіїв заряду не буде залежати від глибини потенційної ями: всі електрони (неосновні носії), що з'явилися в краю потенційної ями, упадуть у неї. Поле в p-n-переході можна змінити шляхом подачі на структуру зовнішньої напруги. Якщо полярність зовнішньої напруги спрямована проти поля в переході, то гальмуюче для основних носіїв заряду поле в переході ( або потенційний бар'єр), зменшується, і потік основних носіїв заряду через p-n-перехід збільшується й значно перевищує існуючий потік неосновних носіїв. Таканапруга на p-n-переході називається прямою. При прямій напрузі прямий струмвизначається потоком основних носіїв заряду й при прямому струмі nn >> pp , то дірковою складовою прямого струму можна знехтувати. При зворотній напрузі зворотний струмвизначається потоком неосновних носіїв заряду; оскільки pp >>nn.

1.3 Силові діоди.

Діоди, які використовуються в електричних пристроях для перетворення змінного струму в струм однієї полярності називаються випрямними. На вольтамперній характеристиці (ВАХ) Значення прямого й зворотного струмів відрізняються на кілька порядків, а пряме спадання напруги не перевищує одиниць вольтів у порівнянні зі зворотною напругою, що може становити сотні й більше вольтів. Тому діоди мають однобічну провідність, що дозволяє використати їх як випрямні елементи. З малюнка також можна зробити висновок, що з ростом температури зворотний струм зростає. У більшості діодів цей струм при температурі 125ºС може збільшиться на 2-3 порядки в порівнянні зі струмом при 25ºС

Зі збільшенням зворотної напруги зворотний струм також росте, але повільніше, ніж з підвищенням температури. Лише при подачі зворотної напруги, більше нормованої, відбувається різке його збільшення, що може привести до пробою p – n-переходу.