Смекни!
smekni.com

Діоди (стр. 5 из 7)

Принципово важливе значення для генерації високовольтнихнаносекундних імпульсів має синхронність процесу відновлення великої кількості діодів, з'єднаних послідовно. Зрозуміло, амплітуда й тривалість імпульсу прямого струму, а також швидкість наростання імпульсу зворотного струмує строго однаковими для всіх діодів збірки, однак загальна кількість плазми, введеної в р- і п-області імпульсом прямого струму, і форма її розподілу, у принципі, можуть відрізнятися від діода до діода через розброс часу життяносіїв у р- і п-шарах. Це може привести до неузгодженості відновлення діодів у часі, і сумарний процес обриву струму сповільниться. Виявилося, однак, що розроблені технологічні процеси забезпечують достатню відтворюваність цих параметрів для одержання наносекундного обриву струмув збірці, оскільки тривалість імпульсу прямого струму (сотні наносекунд) багато менше середнього часу життя τПР нерівноважних носіїв у р- і п-шарах, а коефіцієнт інжекції р+р-переходу практично однаковий у всіх приладів.

Амплітуда імпульсу зворотного струму одиничного елемента ДДРВ може бути дуже великою, оскільки простота технології дозволяє виготовляти прилади на кремнієвих пластинах будь-яких діаметрів, використовуваниху промисловості (до 125 мм). Однак експерименти показують, що на пластинах діаметром більше 25 мм тривалість процесу обриву струму зростає зі збільшенням діаметра. Передбачається, що це зв'язанозіскін-ефектом, але цілеспрямованих досліджень цієї проблеми проведено не було. Робоча площа приладуна пластині діаметром 25 мм дорівнює ~ 4 см2, тобто при JR = 200 А/см2 амплітуда імпульсу становить 800 А, а імпульсна потужність дорівнює 1,2 МВт при робочій напрузі 1,5 кВ. З таких приладів, оскільки їх легко з'єднувати послідовно й паралельно, можна створювати генератори наносекундних імпульсів великої потужності. ПояваДДРВ в 1983-1985 р. привела до радикальних змін у потужній напівпровідниковій імпульсній техніці - генератори наносекундних імпульсів потужністю в десятки мегаватів, що працюють на частотах у сотні герц, стали цілком звичайними. Робоча частота ДДРВ-збірок, у принципі, може бути дуже високою, оскільки після проходження імпульсів прямого й зворотного струмів (тобто через ~ 500 нс післяпочатку циклу) наступний цикл може починатися практично відразу. У дійсності ж частотні можливості визначаються тепловими обмеженнями у формувачах імпульсів прямого і зворотнього струмів, де як ключі звичайно використовуються транзистори (польові або біполярно-польові).

У деяких областях застосування, зокрема, у лазерній техніці, затримка між керуючим сигналом і потужнимнаносекундним імпульсом повинна бути мінімально можливою. У пристроях на основі ДДРВця затримка визначається сумарною тривалістю імпульсів прямого і зворотнього струмів й не може бути менше 200-300 нс, причому основна її частина - це тривалість імпульсу прямого струму. Якщо створити напівпровідникову структуру, у якій необхідна для різкого обриву зворотного струму неоднорідність розподілу плазми забезпечується при постійному прямому струмі, то затримка буде дорівнювати тривалості імпульсу зворотного струму й може бути зменшена до 15-20 нс. Такі структури були створені шляхом зниження коефіцієнта інжекції п+п-перехода в р+рпп+-структурі за допомогою строго контрольованого зниження рівня легування п+-шару в тій його області, з якої відбувається інжекція електронів. У цій структурі концентрація плазми вп+п-переході при протіканні прямого струму набагато менше, ніж ур+р-переході, і при протіканні імпульсу зворотного струмупершим утвориться плазмовий фронт не вр+р-, а вп+п-переході. Як показали експерименти, у такому діоді з інверсним порядком відновлення, робоча густина прямого струму істотно нижче, ніж у ДДРВ, і трохи менша накопичена кількість плазми. Однак оптимальна густина зворотного струму повинна мати таку ж величину, як й у ДДРВ, тому час наростання зворотного струму повинне бути не більше 15-20 нс, що й визначає час затримки імпульсу.

3.2. SOS-діоди.

Як було показано в попередньому розділі, робоча густинаструму в дрейфових діодах з різким відновленням принципово не може перевищувати 200-300 А/см2, а скін-ефект обмежує можливість збільшення робочої площі діода вище ~ 4 см2. Тому для створення на основі ДДРВ розмикачів гігаватного діапазону потужностей, який би розмикав струми у десятки кілоампер із робочою напругою в сотні кіловольтів необхідно з'єднувати паралельно й послідовно дуже велику кількість діодів. Оцінки показують, що вартість і складність таких систем стає нереально високою.

Прорив в областьгігаватних потужностей відбувся в 1992-1993 р., коли в Інституті електрофізики (ІЕФ) УрВ РАН було експериментально встановлено, що при дуже великих густинах струмів прямий і зворотний струми (на один-два порядки більші, ніж оптимальні для ДДРВ-режиму) у певному діапазоні густин струмів і тривалостей імпульсів також спостерігається різкий обрив струму, причому механізм його явно відрізняється від ДДРВ. Наступні експерименти й розрахунки дозволили створити фізичну картину цього явища, яке автори назвали SOS-ефект (SOS - Semiconductor Opening Switch).

Фізико-математичне моделювання SOS-процесуполягало в спільномучисельному розв’язку рівняння Кірхгофа для електричної схеми зSOS-діодом, рівнянь неперервності потоку для електронів і дірок у діодній структурі й рівняння Пуассона. Як приклад на рис. 3.4 наведені розрахункові параметриSOS-процесу при накачці й відновленнізборки, щоскладає з 160 диодныхр+рпп+-структур із площею 0,36 см2, глибиною залягання рп-перехода 165 мкм, товщиною п-базы ~ 65 мкм і концентрацією донорів у ній 1014 см-3.

а)Розподіл концентрації електронів п (суцільна лінія) і дірок р(штрихова) наприкінці імпульсу прямогоструму при Ір = 0,8 кА·см-2 і тривалості 360 нс.

б, в) Розподіл надлишкової концентрації дірок

р і напруженості поля при обриві імпульсу зворотного струмуJRmах = 4,2кА·см-2 у момент максимальної напруги на структурі.

Технологія виготовлення дифузійних шарів аналогічна описаній в попередньому розділі. Опір навантаження становив 200 Ом. Розрахунковий розподіл плазми в приладі в кінці накачування коротким (~ 360 нс) імпульсом прямого струмуJR = 0,8 кА·см-2 показано на рис. 3.4а; на рис. 3.4б показано положенняплазмових фронтів, а на рис. 3.4в розподіл поля при обриві струму із щільністю 4,2 кА·см-2 і часом наростання 35 нс.

Добре видно, що через велику густину прямогоструму концентрація плазми, внесеної біполярним дрейфом у центральну частину діода, вище, ніж у ДДРВ-процесі. Швидко наростаючий імпульс зворотного струму формує крутіплазмові фронти в р- і п-шарах, щорухаються назустріч один одному, причому фронт у р-області рухається з істотно більшою швидкістю. Густина потоку дірок, що виносяться полем із плазми через ліву границю:

безупинно ростезростомструму, а плазмовий фронт, переміщаючись вправо по дифузному р-шару, проходить областіз неперервно зменшуваною концентрацією легуючої акцепторної домішки. При р> Nа об'ємний заряд нескомпенсованих вільних дірок створює електричне поле, обумовлене різницею концентрацій дірок, що рухаються з насиченою швидкістю, і концентрацією нерухомих акцепторів. Напруженість поля різко наростає, а ширина області об'ємного заряду збільшується в міру переміщення границі плазми.

На цьому етапінапруга на діоді швидко збільшується, а струм переходить у навантаження, включене паралельнодіоду. Зменшення струму через діод, природно, зменшує густину потоку дірок в ООЗ (за час порядку часупрольоту ~ 0,2 нс), але одночасно зменшується й концентрація акцепторів, оскільки границя зміщається до рп-переходу; це затримує спад напруженості поля в ООЗ. Розрахунок показує, що при спаді струму на 30-40 % поле в ООЗдосягає порогу ударної іонізації в кремнію (>2·105 В·см-1), що приводить до появи електронного компоненту струму в ООЗ, що зменшує швидкість руху фронту:

(3.2)

Принципово важливою особливістю SOS-процесу є те, що всі описані явища відбуваються в досить сильно легованій р-області; на відміну від ДДРВ-процесу, рп-перехід і слабко легована п-базазалишаються "залитими" елктронно-дірковою плазмою високої густини й майже ніякої участі в обриві струму не приймають. Другою важливою особливістю SOS-ефекту є те, що через ударну іонізацію в ООЗ виведений з діода заряд може бути істотно більший від "накачаного" імпульсом прямого струму.

Моделювання показало, що основний вплив на динаміку обриву струмуробить форма початкового розподілу плазми в діоді й форма розподілулегуючої домішки в р-шарі. Експериментально було підтверджено, що чим коротший імпульс прямого струму(тобто чимбільша кількість плазми втримується у вузькій областір+р-переходу) і чим менший градієнт концентрації домішок у р-шарі (тобто чим глибше розташованийрп-переход), тим швидше протікає процес обриву струму. Так, при надглибокому рп-переході (180 – 200 мкм) і короткому (десятки наносекунд) імпульсі зворотного струму обрив струму протікає за час, менше наносекунди.