Смекни!
smekni.com

Исследование свойств магнитных жидкостей методом светорассеяния (стр. 8 из 14)

Поскольку строго монохроматическое излучение редко встречается в природе, поляризация никогда не бывает полной. В этом случае говорят о частичной поляризации излучения. Отсюда следует второе свойство параметров Стокса, на которое вначале указал сам Стокс, а затем рассмотрел Чандрасекар [ ]. Согласно этому свойству любой поток квазимонохроматического излучения можно представить в виде суммы неполяризованной компоненты

типа (28) и полностью поляризованной компоненты
, соответствующей одному из видов поляризации, т.е.

(29)

Степень частичной поляризации

однозначно определяется отношением

(30)

Вектор-параметр Стокса для частично поляризованного потока излучения можно разделить на две компоненты, полагая

. (31)

В заключение данного параграфа следует отметить, что основное внимание уделено получению выражений для параметров Стокса в случае идеализированного электромагнитного излучения фиксированной частоты. В частности, рассмотрены два наиболее важных свойства, вытекающие из определения параметров Стокса: 1) аддитивность этих параметров для двух независимых потоков света, совпадающих по направлению распространения; 2) возможность представлять произвольное состояние частичной поляризации (подобной той, какая, вероятнее всего встречается в реальных условиях) через параметры Стокса двух идеализированных компонент потока, соответствующих полностью неполяризованному и полностью поляризованному состояниям излучения. Оба эти свойства играют важную роль при определении параметров Стокса для полидисперсных систем.

Матрица Стокса для рассеяния МИ

Выразим теперь элементы матрицы (10) через параметры теории Ми. Конкретный вид этой матрицы впервые был получен в работе Перрена [ ], в которой использованы оптические свойства идеальных рассеивающих частиц Ми. Этот вывод основан на том, что преобразование вектор-параметра Стокса для обычного однородного и линейного оптического процесса можно выразить при помощи квадратной матрицы (4Х4) с 16 независимыми коэффициентами. Если такой процесс происходит в изотропной среде, то при любой фиксированной частоте

эти коэффициенты являются только функциями угла
между падающим и рассеянным излучениями. В этом случае число независимых коэффициентов последовательно уменьшается до: 10 – при учете принципа обратимости (отсутствует флуоресценция или раман-эффект), 8 – при учете зеркальной симметрии в среде, 4 – если в добавление к указанным выше свойствам учитывать сферическую симметрию. В последнем случае получим форму матрицы преобразования, представленную формулой (10). Согласно [ ], будем предполагать, что образование падающего потока происходит только при чистом рассеянии однородной сферической частицей, образованной из оптически неактивного вещества с комплексным показателем преломления, отличным от показателя преломления окружающей среды. Кроме того подразумевается, что рассеивающие частицы обладают всеми свойствами симметрии, о которых говорилось выше. При этих допущениях любая плоскость рассеяния является также плоскостью симметрии. Поэтому ясно, что для описания полного преобразования вектор-параметра Стокса падающего потока достаточно двух комплексных величин характеризующих амплитуды поля в направлениях, перпендикулярном и параллельном плоскости рассеяния. Этими величинами являются непосредственно амплитудные функции Ми. В [ ] показано, что элементы матрицы (10) имеют вид:

(32)

где последние два выражения преобразованы на основании свойств комплексных чисел

,

.

Таким образом, согласно (10) и (32), элементарный процесс рассеяния отдельной частицей рассматриваемого вида или (при условии независимости рассеяния) или совокупностью одинаковых частиц, заключенных в небольшом объеме, описывается матричным уравнением:

(33)

Выполняя умножение матриц (33) и используя обозначение (32), получаем

(34)

Здесь два первых параметра Стокса I и Q заменены на

и
, что упрощает форму матрицы рассеяния и действия с ней. Выражения для
и
определяются формулами (27 а) и (27 г), причем
и
. В дальнейшем ради удобства будем использовать видоизмененную систему параметров Стокса и форму матрицы преобразования, определяемые соответственно выражениями
и (10). Легко показать, что в принятой нами системе параметров Стокса критерий полной или частичной поляризации имеет вид

(35)

Но степень частичной поляризации всегда определяется соотношением (30).

В работе Перрена и Абрагама [ ] выведено соотношение между элементами

матрицы преобразования, имеющее особое значение для проблемы рассеяния полидисперсными частицами. Данное соотношение в принятых обозначениях имеет вид:

(36)

Оно справедливо только для отдельной рассеивающей частицы Ми или для ансамбля таких частиц с одинаковыми размерами и оптическими свойствами. Подставляя (34) в (35) , после упрощений получаем

(37)

Из (35) – (37) следует, что если падающее излучение полностью поляризовано, то процесс первичного рассеяния отдельной частицей Ми будет приводить к полной поляризации рассеянного излучения во всех направлениях. Очевидно также, что в результате рассеяния неполяризованного света не обязательно получается неполяризованное излучение. Исключение составляют направления вперед и назад, поскольку обычно для отдельных сферических частиц

. Более того, если падающий свет является неполяризованным или линейно поляризованным, то процесс рассеяния приводит к частичной или полной линейной поляризации. Далее, из соотношений (35) видно, что эллиптически поляризованный свет получается только в результате рассеяния полностью или частично поляризованного излучения.

Рассмотренные выше поляризационные свойства рассеянного излучения позволяют использовать их на практике. Допустим, что можно получить излучение, очень близкое к монохроматическому и полностью поляризованному (например, излучение лазера). Пусть, далее, поляризацию рассеянного света можно точно определить экспериментально. Тогда полученная степень деполяризации является мерой гетерогенности для системы рассеивающих частиц. В противном случае рассеивающие частицы должны быть или одинаковыми, или монодисперсными. Подобная методика является особенно ценной тогда, когда рассеивающие частицы нельзя изолировать и непосредственно исследовать их размеры и состав, как, например, в случае гидрозолей или аэрозолей.

ГЛАВА 3. ЭКСПЕРИМЕНТ. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ.

§1. Методика проведения экспериментов по светорассеянию.

3.1. Приборы для определения светорассеяния.

В зависимости от метода регистрации интенсивности рассеянного света приборы можно разделить на два класса – визуальные и фотометрические. В первом из них визуально сопоставляют величины интенсивности светорассеяния для исследуемого раствора и определенного эталона, во втором для регистрации рассеянного света служит фотоэлектрическое измерительное устройство. Применительно к потребностям измерений светорассеяния были разработаны различные конструкции визуальных и фотоэлектрических приборов.

Первый фотоэлектрический прибор был применен для исследования растворов полимеров Дебаем [36]. Фотоэлемент, перемещавшийся в этой конструкции вокруг кюветы с раствором, позволял измерять интенсивность света рассеянного под различными углами

к первичному световому пучку. В приборе, сконструированном Зиммом [36], был впервые использован для указанных целей фотоумножитель, что освобождало от последующего усиления фототока, требовавшегося в приборе Дебая.