Смекни!
smekni.com

Формирование и развитие основных понятий геометрической оптики в курсе физики средней школы (стр. 2 из 8)

Основные положения волновой теории света Гюйгенса.

1) Свет – это распространение упругих апериодичных импульсов в эфире. Эти импульсы продольны и похожи на импульсы звука в воздухе.

2) Эфир – гипотетическая среда, заполняющая небесное пространство и промежутки между частицами тел. Она невесома, не подчиняется закону всемирного тяготения, обладает большой упругостью.

3) Принцип распространения колебаний эфира таков, что каждая его точка, до которой доходит возбуждение, является центром вторичных волн. Эти волны слабы, и эффект наблюдается только там, где проходит их огибающая поверхность – фронт волны (принцип Гюйгенса) (рис. 1.1.4).



Чем дальше волновой фронт от источника, тем более плоским он становится.

Световые волны, приходящие непосредственно от источника, вызывают ощущение видения.

Очень важным пунктом теории Гюйгенса явилось допущение конечности скорости распространения света. Используя свой принцип, ученому удалось объяснить многие явления геометрической оптики:

– явление отражения света и его законы;

– явление преломления света и его законы;

– явление полного внутреннего отражения;

– явление двойного лучепреломления;

– принцип независимости световых лучей.

Теория Гюйгенса давала такое выражение для показателя преломления среды:

(2)

Из формулы видно, что скорость света должна зависеть обратно пропорционально от абсолютного показателя среды. Этот вывод был противоположен выводу, вытекающему из теории Ньютона. Невысокий уровень экспериментальной техники XVII века исключал возможность установить, какая из теорий верна.

Многие сомневались в волновой теории Гюйгенса, но среди малочисленных сторонников волновых взглядов на природу света были М. Ломоносов и Л. Эйлер. С исследований этих ученых теория Гюйгенса начала оформляться как теория волн, а не просто апериодических колебаний, распространяющихся в эфире.

Взгляды на природу света в XIX-XX столетиях.

В 1801 году Т. Юнг выполнил эксперимент, который изумил ученых мира (рис. 1.1.5)


Рис. 1.1.5.

S – источник света;

Э – экран;

В и С – очень узкие щели, отстоящие друг от друга на 1-2 мм.

По теории Ньютона на экране должны появиться две светлые полоски, на самом деле появились несколько светлых и темных полос, а прямо против промежутка между щелями В и С появилась светлая линия Р. Опыт показал, что свет явление волновое. Юнг развил теорию Гюйгенса представлениями о колебаниях частиц, о частоте колебаний. Он сформулировал принцип интерференции, основываясь на котором, объяснил явление дифракции, интерференции и цвета тонких пластинок.

Французский физик Френель соединил принцип волновых движений Гюйгенса и принцип интерференции Юнга. На этой основе разработал строгую математическую теорию дифракции. Френель сумел объяснить все оптические явления, известные в то время [2].

Основные положения волновой теории Френеля.

– Свет – распространение колебаний в эфире со скоростью

, где e – модуль упругости эфира, r – плотность эфира;

– Световые волны являются поперечными;

– Световой эфир обладает свойствами упруго-твердого тела, абсолютно несжимаем.

При переходе из одной среды в другую упругость эфира не меняется, но меняется его плотность. Относительный показатель преломления вещества

.

Поперечные колебания могут происходить одновременно по всем направлениям, перпендикулярным направлению распространению волны.

Работа Френеля завоевала признание ученых. Вскоре появился целый ряд экспериментальных и теоретических работ, подтверждающих волновую природу света.

В середине XIX века начали обнаруживаться факты, указывающие на связь оптических и электрических явлений. В 1846 г. М. Фарадей наблюдал вращения плоскостей поляризации света в телах, помещенных в магнитное поле. Фарадей ввел представление об электрическом и магнитном полях, как о своеобразных наложениях в эфире. Появился новый "электромагнитный эфир". Первым на эти взгляды обратил внимание английский физик Максвел. Он развил эти представления и построил теорию электромагнитного поля.

Электоромагнитная теория света не зачеркнула механическую теорию Гюйгенса-Юнга-Френеля, а поставила ее на новый уровень. В 1900 г. немецкий физик Планк выдвинул гипотезу о квантовом характере излучения. Суть ее состояла в следующем:

– излучение света носит дискретный характер;

– поглощение происходит тоже дискретно-порциями, квантами.

Энергия каждого кванта представляется по формуле E=hn, где h – постоянная Планка, а n – это частота света.

Через пять лет после Планка вышла работа немецкого физика Эйнштейна о фотоэффекте. Эйнштейн считал:

– свет, еще не вступивший во взаимодействие с веществом, имеет зернистую структуру;

– структурным элементом дискретного светового излучения является фотон.

В 1913 г. датский физик Н. Бор опубликовал теорию атома, в которой объединил теорию квантов Планка-Эйнштейна с картиной ядерного строения атома.

Таким образом, появилась новая квантовая теория света, родившаяся на базе корпускулярной теории Ньютона. В роли корпускулы выступает квант.

Основные положения

– Свет испускается, распространяется и поглощается дискретными порциями – квантами.

– Квант света – фотон несет энергию, пропорциональную частоте той волны, с помощью которой он описывается электромагнитной теорией E=hn.

– Фотон, имеет массу (

), импульс
и момент количества движения (
).

– Фотон, как частица, существует только в движении скорость которого – это скорость распространения света в данной среде.

– При всех взаимодействиях, в которых участвует фотон, справедливы общие законы сохранения энергии и импульса.

– Электрон в атоме может находиться только в некоторых дискретных устойчивых стационарных состояниях. Находясь в стационарных состояниях, атом не излучает энергию.

– При переходе из одного стационарного состояния в другое атом излучает (поглощает) фотон с частотой

, (где Е1 и Е2 – энергии начального и конечного состояния).

С возникновением квантовой теории выяснилось, что корпускулярные и волновые свойства являются лишь двумя сторонами, двумя взаимосвязанными проявлениями сущности света. Они не отражают диалектическое единство дискретности и континуальности материи, выражающейся в одновременном проявлении волновых и корпускулярных свойств. Один и тот же процесс излучения может быть описан, как с помощью математического аппарата для волн, распространяющихся в пространстве и во времени, так и с помощью статистических методов предсказания появления частиц в данном месте и в данное время. Обе эти модели могут быть использованы одновременно, и в зависимости от условий предпочтение отдается одной из них [2].

Достижения последних лет в области оптики оказались возможными благодаря развитию, как квантовой физики, так и волновой оптики. В наши дни теория света продолжает развиваться.

§1.2 Волновые свойства света и геометрическая оптика.

Оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом.

Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть понятны в рамках геометрической оптики, которая оперирует понятием отдельных световых лучей, подчиняющихся известным законам преломления и отражения и независимых друг от друга. Для понимания более сложных явлений нужна физическая оптика, рассматривающая эти явления в связи с физической природой света. Физическая оптика позволяет вывести все законы геометрической оптики и установить границы их применимости. Без знания этих границ формальное применение законов геометрической оптики может в конкретных случаях привести к результатам, противоречащим наблюдаемым явлениям. Поэтому нельзя ограничиваться формальным построением геометрической оптики, а необходимо смотреть на нее как на раздел физической оптики [3].

Понятие светового луча можно получить из рассмотрения реального светового пучка в однородной среде, из которого при помощи диафрагмы выделяется узкий параллельный пучок. Чем меньше диаметр этих отверстий, тем уже выделяемый пучок, и в пределе, переходя к отверстиям сколь угодно малым, можно казалось бы получить световой луч как прямую линию. Но подобный процесс выделения сколь угодно узкого пучка (луча) невозможен вследствие явления дифракции. Неизбежное угловое расширение реального светового пучка, пропущенного через диафрагму диаметра D, определяется углом дифракции j~l/D. Только в предельном случае, когда l=0, подобное расширение не имело бы места, и можно было бы говорить о луче как о геометрической линии, направление которой определяет направление распространения световой энергии [4].